How Breath Alcohol Analysis Works

Alcohol shows up in the breath because it gets absorbed from the mouth, throat, stomach and intestines into the bloodstream. Alcohol­ is not digested upon absorption, nor chemically changed in the bloodstream. As blood circulates through the lungs, some of the alcohol moves across the membranes of the lung’s alveoli, into the air stored within the lungs. Because the alcohol concentration in the breath is related to the concentration in the blood, an approximate measurement can be identified when using a simple ratio formula of breath alcohol to blood alcohol which is 2100:1. This means that 2100 milliliters of alveolar air will contain the same amount of alcohol as 1 milliliter of blood

The Country With the Most Vegetarians Per Capita and the First Notation of Vegetarianism Within Western Literature

The country with the most vegetarians per capita is India, with 39% of the country identifying as vegetarian and/or vegan, a value which equates to 276,000,000 (276 million) people. This is primarily due to the dominant religion within India which is Hinduism, a faith which 79.8% of the country subscribes to, and to a lesser extent, Sikhism, a faith which promotes vegetarianism and is subscribed to by 1.7% of the country. Mexico trails India for the second spot internationally with 19% of the country identifying as vegetarian and Brazil takes the third spot with 14% having adopted this diet. The first time vegetarianism is mentioned within recorded western history is by the Ancient Greek mathematician Pythagoras around 500 BC, however it is unclear if this is the first recorded text worldwide

The Origin of the Use of Analgesia While Giving Birth

Analgesia was not an option while giving birth until the mid 19th century as pain was believed to be a crucial part of the birthing experience. In 1591, Euphemia Maclean, a woman from Edinburgh, Scotland requested analgesia during the birth of her twins and was burned at the stake for this request. Analgesia started with Queen Victoria who used chloroform for the birth of her 8th child Leopold. It was Victoria’s experience that she told to others which made the practice catch on so quickly as Victoria felt that analgesia was an amazing invention which helped her immensely. In the 1950’s, the no medication approach swung back into fashion with Dr. Grantly Dick-Read, the first modern physician to suggest against analgesia as he believed the pain of childbirth to be psychological

The Discovery of Bacterium Causing Stomach Ulcers

For decades the medical community believed gastric ulcers were directly related to stress with the only options for relief being antacids and surgery. In the early 1980’s, Australian physicians Barry Marshall and Robin Warren discovered through biopsies of gastric ulcers, that nearly all were overrun by helicobacter pylori bacteria. Helicobacter pylori only seems to infect humans, as studies performed upon pigs and rats were unsuccessful as these animals were unable to contract the bacterium. Marshall decided to infect himself and within 5 days of doing so, he started running to the bathroom each morning to throw up. Tests demonstrated that Marshall had gastritis, a precursor to an ulcer. Marshall took antibiotics and was cured, proving once and for all that ulcers are caused by bacteria not stress. In 2005, Marshall and Warren won the Nobel Prize in Medicine for their findings

The First U.S. Presidential Vaccine Mandate

U.S. President George Washington issued the first presidential vaccine mandate, requiring all soldiers within the continental army to become vaccinated against smallpox on February 5, 1777. 90% of deaths during the American Revolution were due to disease, with smallpox being the most prevalent and difficult pathogen for the military to control. Immunization was viewed as an achievable solution to a virtually insurmountable problem as death from smallpox plunged from 30% to 2% after a becomming immunized. Vaccination, or “variolation” as it was referred to during the era, was achieved by taking a small piece of an active smallpox sore from an infected person, and then introducing it to the person being inoculated via inhalation or by scratching their arm and introducing the virus by touch. The mandate, although initially detested, became highly successful in its pursuit of lowering soldier mortality rate, with 40,000 soldiers vaccinated by the end of 1777

The Study of Bacteriophages in Antibiotic Research and Why They May be the Next Major Scientific Breakthrough

Bacteriophages, which are viral infections that reproduce to target and kill bacteria, were studied in Eastern Europe during the 1950’s by countries which did not have access to western medicine, including antibiotics. In 1 milliliter of sea water, billions of phages are present, with countless different varieties. Phages have tendril like appendages which are used to probe and identify hosts, clinging onto them, then forcing its own deoxyribonucleic acid down into the bacterial host. When this genetic code is introduced, it destroys the bacteria as a direct result. This leads to a chain reaction as hundreds more are produced each time this instance occurs, copies which then fledge out and find hosts of their own, building populations exponentially and wiping out bacterial infections completely. Bacteriophages were found prior to chemical antibiotics but when Penicillin was discovered, because it is so easy to develop and administer, chemical antibiotics became the clear path of choice in medicine with scientists not realizing the severity of this error until decades later. Antibiotics are often broad spectrum which is another reason antibiotic research overshadowed bacteriophagic research as different phages affect different bacteria and are therefore not broad spectrum. Because phages are self-replicating like bacteria, they have the ability to completely annihilate all bacteria presented before them in the same way that bacteria have the ability to totally annihilate their own host as well. Because of this, bacterial infections can be knocked out with 100% efficacy in all cases, regardless of the severity of the the infection, provided the correct phage is alotted enough time to do so. This is a task antibiotics often struggle to achieve and even if achieved, cannot be guaranteed in perpetuity as reinfection or resistance can occur at any time

Textile Pollution of the Citarum River in Indonesia

The Citarum River (pronounced “chit-ah-rum”) in Indonesia is considered to be the most heavily polluted river in the world with over 400 textile factories situated nearby which choose to dump their industrial waste directly into the river itself, treating the river as a sewer system which carries away waste. The problem is so intense that the Indonesian military has been implemented to help clean up the area but corporations have resorted to dumping their waste products at night and because the unseen chemicals are the real threat to those living near the river, these companies are permitted to continue dumping as no one can definitively prove their culpability without scientific measurements which are difficult to ascertain as Indonesia is a developing country. Corporations have even begun to strategically place their waste pipes under water so that they can pollute with impunity as no one can physically see the pollution being dumped. Water darker than its surroundings, steam, bubbles, and froth are all key signs which activists use to spot these illegal port systems. It’s difficult to pin point which factories produce textiles for western companies as western companies virtually always refuse to disclose which factories they work with. Some of the largest corporations in fashion (e.g. H&M, the Gap, Levi’s etc.) have revealed their sources but even with this disclosure, some of these companies have been linked to factories within this region. Indonesia isn’t a top 5 global producer of textiles, so to say that Indonesia is part of an even larger problem, is an accurate statement. Most people who live near the Citaum River use the river for bathing, drinking, and/or cooking, and noticeable dermatological effects have been noticed by those living within the area. The primary problem with the Citarum River is with heavy metals (e.g. mercury, cadmium, lead, arsenic etc.). Long term exposure to these substances can cause neurological problems as brain function becomes permanently damaged. These heavy metals are so dire that they can actually lower the intelligence quotient of children who are developing and attending their education. 28,000,000 (28 million) people rely upon the Citarum River daily and eat foods (e.g. rice) irrigated with its waters. Human rights activists have engaged these corporations by physically blocking piping and ducts which have caused the affected corporations to start hiring mercenary criminals to follow and attack those known to be a part of this resistance. Western consumers are the primary cause and possible solution for this problem because if there are no clients willing to purchase the garments, the industry as a whole will shift, not because of political pressure or governmental oversight, but rather because of sales. The problem is not centralized in Indonesia as other developing countries (e.g. India, Bangladesh, China etc.) are equally negatively impacted

The Rationale Why Pharmaceutical Organizations are Not Incentivized to Develop Antibiotics and Why This is Dangerous for the Worlds Next Pandemic

Within 5 short years of release, approximatly 20% of antibiotics become subject to resistance from bacterial pathogens which means that antibiotic proliferation is chronologically limited within its life expectancy. Coupled with this, if an antibiotic is highly effective, the scientific and medical community often rally against its usage so that such a tool can be saved in reserve for a global bacterial pandemic. In either scenario, return upon investment is less than what it would be with a different class of medication (e.g. selective serotonin re-uptake inhibitor, statin, hypnotic etc.) which is why pharmaceutical organizations are less interested in research and development dedicated to antibiotic medicine in favor of other, more profitable medication categories. This lack of investment however is myopic and will inevitably backfire upon the pharmaceutical industry as a whole if new antibiotics are not developed because medications used to treat cancer will become less in demand due to the fact that cancer patients are highly likely to acquire an infection during treatment when their immune system is comprised, with this infection often killing the patient if antibiotic solutions are not available. This would expectedly lead to a sharp decline in cancer medication treatment and subsequently pharmaceutical sales of related medications as patients would be likely to adopt living the rest of their life as fully as possible and forgoing treatment as they would be damned if they accept the cancer treatment and develop an infection which kills them but also damned if they don’t accept the treatment and let the cancer run its course which is almost always fatal. To provide comparison of the research, development, and manufacturing contrast between oncology medications and antibiotics, as of 2020, there are currently 800 medications in development for cancer and hypertension whilst only 28 antibiotic medications undergoing that same research phase and development process, with 2 of these antibiotics expected to become fully developed and able to reach the market and patients. The last new antibiotic class, lipopeptides, were introduced in 1984 with a gap referred to as an “antibiotic void” occurring during the 1990’s, 2000’s, 2010’s, and now moving into the 2020’s. The urgency of this threat is projected to become dire within the coming decades, with scientists predicting that by 2050, medicine could potentially come full circle to the pre-antibiotic era, with microbes which are completely and totally resistant to every antibiotic known to medicine

A Revolutionary Breakthrough in Oncology Treatment

Cancer kills 9,000,000 (9 million) people each year and despite having searched for centuries, a cure has yet to be discovered by scientists. At the center of the immune system is the T cell, a type of leukocyte which respond against bacterial and viral infections alike in an effort to keep their host healthy and alive. T cells determine between threatening and non-threatening foreign and non-foreign bodies within a host by leveraging a molecule upon the surface of all cells referred to as the “T cell receptor”. Jim Allison was the first person to successfully isolate and purify the molecule which recognizes this lock and key model for infectious disease, auto-immune disease, and other innocuous substances within the body be they foreign or internally created. In 1987, French scientist Pierre Golstein and his team discovered a new protein upon the surface of T cells which he named “CTLA-4”. To study CTLA-4 in laboratory rats, Allison had to build and design a rat antibody, a Y shaped protein which would trigger a reaction by CTLA-4. Cancers are mutations and should in theory be visible to the immune system, which is why the scientific community has struggled with the paradox of why tumors go undetected by the immune system for decades. There is no discernible reason as to why the immune system can recognize and resist influenza or any other foreign or domestic body but not cancer. Allison theorized that tumors have evolved an ability to fool the immune system, engaging CTLA-4 which turns on the T cells response to halt its search and destroy measures. Allison hypothesized that if he inserted a Y shaped antibody to block the gap in between the tumor and T cells, the tumor would no longer have its ability to hide, a trait which has been evolved by tumor cells over hundreds of millions of years. This would allow the T cell to infiltrate, attack from within the tumor, shrink, and ultimately kill the growth. Allison spent the next decade trying to turn this revolutionary breakthrough discovery into a medication which could be provided to cancer patients. Allison found Alan Korman, a scientist creating medications for auto-immune disease which provided him with the expert he required to turn this idea into a reality. Korman was tasked with taking the CTLA-4 antibody which Allison and partner Max Krummell developed for laboratory rats, and turn it into a medication which could safely work within human beings with this medication subsequently being named “Ipilimumab” (pronounced “ipi-lim-ooh-mab”). Korman ended up collaborating with a friend from graduate school, Nils Lonberg to accomplish this task. Ipilimumab consists of an intramuscular injection into the leg and a 90 minute intravenous medication drip in comparison to chemotherapy and radiation therapy which take months of treatment to complete and have devastating effects upon overall health as both bad and good tissue are destroyed in an effort to eradicate all tumor cells. Allison’s work with laboratory rats demonstrated that with the help of this newly developed antibody, T cells gained the ability enter into tumors and expand their size in an effort to destroy them from the inside out. This means that the fact that tumors grow initially upon administration is a positive marker and indicative of the medication working as it demonstrates successful infiltration of the tumor cells themselves. Patients often report feeling better after a few treatment sessions, sometimes even a single session, despite computer tomography scans demonstrating that their tumors are growing larger, which under normal circumstances would make a patient feel worse. Some patients even noted increased improvement after having stopped the Ipilimumab treatment, with no further therapy required. On March 25, 2011, the U.S. Food and Drug Administration released approval for Ipilimumab. Ipilimumab and its successors have treated nearly 1,000,000 (1 million) patients worldwide with many of these patients achieving permanent remission which is essentially the definition of having been cured of cancer. Although these medications do not work in every single case, they have definitively demonstrated to be a miracle medication for hundreds of thousands of people thus far. After completing this revolutionary discovery, Allison was awarded the Nobel Prize in Medicine in 2018 for his series of discoveries related to T cells and their ability to halt cancer in its progression in perpetuity

The Spanish Flu Pandemic of 1918 in London, England

At the end of World War I, soldiers coming back to London, England from the Western Front brought with them a particularly infectious version of influenza referred to as the “Spanish Flu”. Exact metrics are unknown because of poor data collection during the early 20th century but an estimated 50,000,000 (50 million) deaths occurred, 3x as many people than that which died during the entire span of World War I. Spanish Flu had its most devastating blitzkrieg upon London in the autumn of 1918, as thousands civilians and soldiers, weakened from 4.5 years of war, became ill within a few short days of Armistice Day. Spanish Flu works quickly to destroy the lungs of healthy victims, with those who contracted the pathogen feeling fine in the morning and often found dead, later that same evening. In 1918, 320 people died of Spanish Flu in London, but during 1919, Spanish Flu had a resurgence and exploded in severity with 16,000 – 23,000 people killed, a surge which caused a shortage of gravediggers and coffins, classifying Spanish Flu as the worst epidemic in living memory. The Spanish Flu outbreak came to an end in May of 1919 once enough of the British population had experienced the infection and either been killed or having survived, becoming immune to the point that the disease could no longer be passed through hosts efficiently enough to continue its spread