The Cosmic Web

The Cosmic Web is a scientific approximation of what the universe may look like at the largest scales, with massive clusters of galaxies linked together through vast filaments, with each containing trillions of stars. It would take light nearly 10,000,000,000 (10 billion) years to cross the distance of the Cosmic Web image

 

The Ability of Quantum Theory to Explain the Existence of All Matter

The theory of quantum mechanics is the most accurate and powerful description of the natural world which scientists have at their disposal. Quantum fluctuations are written into the stars as modern day theories explain that as the universe sprang from a vacuum, it expanded very rapidly, which means that the rules of the quantum world, should have contributed to the large scale structure of the entire universe. The universe is shaped by quantum reality, essentially the quantum world inflated many, many times in that nothingness has shaped everything, with this concept now being definitively proven as fact. Quantum physics provides a natural mechanism through quantum fluctuations to see into the early universe with small irregularities that would later grow to create galaxies. The idea that a cluster of gas and dust like the Milky Way Galaxy, a collection of billions of stars, could begin life simply because of small quantum fluctuations, is absolutely mind boggling, as these tiny fluctuations within the vacuum of space were only present upon a submicroscopic scale, yet had the ability to grow into some of the largest objects in the universe. This is possible because the Big Bang produced equal amounts of matter and anti-matter but as the universe cooled down, matter and anti-matter annihilated almost perfectly, but not quite, as every 1,000,000,000 (1 billion) annihilations will lead to 1 particle of matter being left behind and this is what has built the matter of the physical world, everything from stars to the Earth to the smallest life forms and inanimate objects. Everything within the universe which is physical to the touch is simply debris of an enormous collision between matter and anti-matter at the beginning of time

The Business Rationale Behind Videogame Pre-Order Perks

Videogame production companies focus heavily upon pre-order sales as these provide the best path to generating revenue, income which is then re-invested to make even more profit. Production studios spend a lot of time and effort trying to come up with appealing pre-purchase packages because the quicker income is generated, the quicker it can be re-invested, but perhaps as important, pre-sales are sold at the full retail price point unlike delayed sales which are often sold at a discounted rate. Video game production companies spend an immense amount of time developing demonstrations for conventions (e.g. E3, Comic Con, Blizzcon etc.) because this is considered the best opportunity to attract gamers and have them purchase on the spot. These demonstrations are often over the top and include features which won’t be in the final version set for release (e.g. advanced graphical shading features), akin to a bait and switch technique in which the best face is presented with the actual product which is less polished actually being delivered. This deception is intentional as it helps generate revenue which helps fuel the production of future gaming titles and franchises

The 19th Century Discovery of Perfect Reverberation

The discovery and application of perfect reverberation within opera houses, theaters, university concert venues, etc. was devised by Harvard University physicist Wallace Sabine in the 1890’s. By playing the pipe organ and using a stop watch, Sabine took thousands of measurements and discovered the perfect ratio between room volume and sound absorbing materials. A reverb time of 1.9 seconds, an application of the Sabine Equation, allows for perfect reverberation so that speech and music is intelligible to all audience members, no matter their position in the venue which would otherwise be impossible (e.g. cathedral reverberation)

The Fictional and Real Usage of Area Code “555” for Telephone Numbers

Not all phone numbers that begin with “555” are fictional. The phone number “555-1212” is one of the standard numbers for directory assistance throughout the United States of America and Canada and only “555-0100” through “555-0199” are specifically reserved for fictional use with the other numbers being reserved for actual assignment

The First Advancement of Medieval Gunpowder Technology

To create the earliest form of gunpowder, 3 substances were mixed together which included, sulphur, charcoal, and saltpeter which is comprised potassium nitrate. Because these ingredients have varying specific densities, they constantly separated when mixed, forcing soldiers to re-mix gunpowder after having been transported to the battlefield. By the end of the 15th century, a new technique for the manufacturing of gunpowder emerged, that of corning which made gunpowder much more reliable. Corning involves mixing together the 3 primary ingredients to create a slurry. This is more effective than the traditional method because as the mixture dries, the ingredients do not separate due to their different specific gravities. This acts to increase the stability of gunpowder and allowed cannons to evolve into lethal siege engines no longer governed by the strength of soldiers or the laws of mechanics. Gunpowder, the first chemical explosive ever invented, was the driving force behind the weaponry used against fortifications, hurling projectiles faster, further, and with greater force than previously designed mechanically powered machinery (e.g. trebuchet, catapult, ballista etc.)

The Usage of 5D Crystals as a Means of Computational Storage

Quartz is being used to create the most powerful data storage device ever developed, the 5D Superman Memory Crystal, a technology which could store data for up to 13,800,000,000 (13.8 billion) years, the calculated age of the universe. The 5D quartz crystal is a method of ensuring a large density of data can be saved within a relatively small object. This is an incredibly secure and long lasting method of saving data as the information is physically encoded into the crystal itself, remaining indefinitely until the quartz itself is destroyed, a very difficult task in and of itself. In 2018, technology entrepreneur Nova Spivack used a 5D crystal to create a permanent space library, sending it to the International Space Station aboard the SpaceX Heavy Falcon rocket. Quartz is highly stable because it is a crystal, remaining unchanged for billions of years meaning if data is inserted, theoretically it could survive for billions of years. For a quartz crystal approximately 2.5 centimeters by 2.5 centimeters in diameter and 5 millimeters thick, 30 terabytes of data can be held, which is 30,000 gigabytes or 800 Blu-ray discs or 600 smartphones worth of information. This means that the entire British library could be fit into 1000 5D crystal slides, a small enough volume to fit within a single shoebox. A traditional storage medium like a compact disc, stores data in individual pixels, with 1 pixel able to hold the equivalent of 1 bit or 8 bytes of information. In a quartz drive however, each voxel can hold 8 bits or 64 bytes of information. The technology required to achieve this feat however is still in its infancy with scientists still discovering new ways to refine manufacturing, the writing and reading of data, and storage capabilities

The Comparison of Medieval Gunpowder Explosives toward Modern Day Plastic Explosives

During the modern day, soldiers use plastic explosives to blast through walls, similar to that of the gunpowder powered cannons of antiquity, but different in the sense that they can be directly applied and finely controlled. Despite these differences, the principle of both weaponry remains the same which is to create a powerful burst of kinetic energy to smash apart solid structures. Soldiers with explosive expertise during the modern day plant explosives in a lowercase “i” or “t” shape format by separating the explosives with a gap in the middle. This design ensures the explosive will blow a hole in the top and the bottom of the blast site, as well as the sides in some instances, leveraging the physics of the shockwaves produced to disrupt the wall and weaken it in the middle. Explosive experts don’t attach plastic explosives at the bottom of walls for two distinct reasons, the first being because the foundation upon the other side of the wall which cannot be viewed has the potential to be higher than the foundation facing the impending soldiers, which means that the explosives would be blasting into solid ground soil which is much less effective than blasting into walls made of concrete or otherwise, and the second being that explosives close to the ground create rubble directly next to the hole created, making forced entry more difficult, especially under siege conditions with active enemy combatants attempting to stop the breach. The main difference between Medieval gunpowder and modern day plastic explosive is the amount of material required to produce the same effect as plastic explosives are an entire order of magnitude more powerful than gunpowder, with 2 kilograms of plastic explosive equating to multiple barrels of gunpowder. Explosives are categorized as either “high explosives” or “low explosives” with high explosives having the front of the chemical reaction travel faster than the speed of sound and low explosives having the front of the chemical reaction produced travel slower than the speed of sound. To provide comparison, modern day C4 plastic explosives have a detonation velocity of 8,092 meters per second whilst gunpowder has a detonation velocity of just 171 – 631 meters per second

Ancient Roman Emperor Julius Caesar’s Contribution to Time Keeping

The month of July is a derivation of the name, “Julius Caesar”. The ancient Romans opted to rename “Quintilis”, the original name for July which means “fifth month” in Latin, to “July” after Caesars death because this was the same month that he was born. The Julian calendar, a western calendar used until 1582 when the Gregorian calendar supplanted it, is also attributed to Caesar as the Roman year had only 355 days and required an extra month be added, every 3 years. The ancient Romans repeatedly made the same calculation errors and continually found seasons out of synchronization with the actual calendar date observed. With the help of a few Roman scientists, Caesar removed the pre-Etruscan 10 month solar calendar in favor of the 365 day year calendar named after himself. The Roman calendar started on March 25, but was moved to January 1 with the advent of the Gregorian calendar

The Invention of Star Luminosity Mapping to Measure Immense Distances in Space

Henrietta Leavitt, a brilliant scientist who worked at the Harvard Observatory discovered the true size of the universe because of her ability to objectively measure the true brightness of stars. Leavitt became enamored and fascinated by a type of star referred to as a “cepheid variable” which means a “star which pulses within the night sky”. Leavitt’s revolutionary breakthrough occurred when she realized that the intensity of brightness is precisely linked to how quick or slow at which the star blinks. If 2 points of light blink at the same rate but with different intensities, it would stand to reason that the brighter star is closer to the observer than the dimmer one. This allowed Leavitts to measure the distance to stars which lay far beyond the reaches of parallax distance