How Ritalin Acquired its Name

Methylphenidate, more commonly known by its brand name “Ritalin”, was developed in 1944 by Swiss scientist Leandro Panizzon. Panizzon created the medication in part as he wanted his wife Marguerite to become more energized, play better tennis, lose weight, and help improve her hypotension. Panizzon created the term “Ritaline” (pronounced “ree-tah-lean”) for his newly invented medication, named as such for his wife Marguerite (pronounced “mar-gah-reet”) as Marguerite always referred to herself using the shortened version of her name, “Rita”. When Chemische Industrie Basel, more commonly known by the acronym “CIBA”, the company which owned the research, released methylphenidate into the marketplace, the “e” was discarded from “Ritaline” to create “Ritalin” (pronounced “ree-tah-lin”)

The Argument Against Stem Cell Research and Why This Will No Longer be a Problem in the Future

The reason stem cell research is controversial for some is because it is viewed as damaging and harvesting from one life to help another. This argument may be obsolete in the future as scientists are now discovering ways to create stem cells from cells within the body (e.g. skin cells etc.). The traditional method to create a stem cell was to take a skin cell, remove the deoxyribonucleic acid from its nucleus, placing it into an egg which does not have deoxyribonucleic acid but is capable of changing deoxyribonucleic acid, turning it into a stem cell which has the patients genome ascribed unto it. The new method involves placing 4 genes into the nucleus of the skin cell and allowing time to pass, as the genes reorganize the deoxyribonucleic acid so that it begins to appear as stem cell deoxyribonucleic acid, which changes the skin cell and causes it to shrink, losing its outside, converting it into an embryonic stem cell with the only difference between this method and traditional embryonic stem cell creation method being that this technique contains the deoxyribonucleic acid of the patient it is being inserted into. The 4 genes inserted into the cell create 4 proteins which exist naturally within an egg. These proteins trigger the skin cell deoxyribonucleic acid to arrange itself identically to how it would within an embryonic stem cell. Scientists refer to this type of cell as “induced pluripotent stem cells”, commonly abbreviated as “IPS cells”. Ideally, scientists want induced pluripotent stem cells to function identically to natural embryonic stem cells, avoiding the creation of unwanted cells which can lead to cancer. Researchers have discovered that some laboratory created stem cells fail to carry out the task provided and worse yet, some cause cancer to develop. Scientists are currently pursuing 2 paths to alleviate this problem, the first being the attempt to develop induced pluripotent stem cells which function identically to natural embryonic stem cells and the second being to create a system to recognize which induced pluripotent stem cells will fail in an effort to exclude these cells from being inserted into the human body

The 4 Types of Demonic Activity Recognized by the Catholic Church for Exorcism

The Catholic Church recognizes 4 distinct types of demonic activity which include Demonic Infestation (e.g. the presence of evil within an object or at a specific location), Demonic Vexation (e.g. person who experiences physical attacks from a demon), Demonic Obsession (e.g. person who experiences mental attacks from by a demon), and Demonic Possession (e.g. person who has had their body hijacked by a demon with the demon utilizing the victim’s body as though it was their own). Cases of formal exorcism in which a person believes they are possessed by a demon are rare with high ranking Catholic clergy typically seeing 1 – 2 dozen during their career, however cases of Demonic Infestation, Demonic Vexation, and Demonic Obsession are quite common with high ranking clergy typically observing thousands of these cases during that same time span. Although exorcisms are portrayed in media as relatively short exercises, it is not uncommon for those who believe they are possessed to have the exorcism ritual last for days, and for the possession believed to be present to last months or years in duration

The Coca Leaf Extraction Process to Manufacture Cocaine

The cocaine extraction process is complicated but begins with workers shredding the leaves of the coca plant into fine particulate with machinery (e.g. weed trimmer etc.) after which cement powder is added, then sulphuric acid dissolved in water, with the leaves then being placed into an oil drum and doused with gasoline. The mixture is left to sit for an extended period of time so that the cocaine itself can be extracted from the coca leaf. The oil drum mixture is stirred continuously using a large rod and then poured through a filter into another container where battery acid is introduced. The battery acid is sulphuric acid making it similar to the first few steps but it is slightly different as it is diluted with water to become no greater than a 37% concentrate. Battery acid helps to separate the cocaine liquid from the gasoline, with 90% of the barrel being gasoline and 10% at the bottom being pure liquid cocaine. Because the gasoline and liquid cocaine have different specific densities, plantation workers place a hose into the bottom of the barrel so that the liquid cocaine can be extracted, either using a pump or gravity by manually sucking on the hose until liquid cocaine starts flowing through. Pure liquid cocaine is clear like water, and has an acidic, bitter, strong taste. Sodium bicarbonate is then added as it helps to eradicate the excess gasoline and battery acid which remains and turns the liquid white. Once the liquid is dried, it begins to resemble cocaine but the process is not yet complete. The dried powder is then cooked on a stove top and stirred continuously to remove further impurities, the top layer is then removed the same way soup skin is removed with a brown colored liquid left remaining which is cocaine. The brown liquid is spread onto a baking pan and left to dry. It is this paste that is passed onto drug cartels to then be distributed internationally

The Discovery of Bacterium Causing Stomach Ulcers

For decades the medical community believed gastric ulcers were directly related to stress with the only options for relief being antacids and surgery. In the early 1980’s, Australian physicians Barry Marshall and Robin Warren discovered through biopsies of gastric ulcers, that nearly all were overrun by helicobacter pylori bacteria. Helicobacter pylori only seems to infect humans, as studies performed upon pigs and rats were unsuccessful as these animals were unable to contract the bacterium. Marshall decided to infect himself and within 5 days of doing so, he started running to the bathroom each morning to throw up. Tests demonstrated that Marshall had gastritis, a precursor to an ulcer. Marshall took antibiotics and was cured, proving once and for all that ulcers are caused by bacteria not stress. In 2005, Marshall and Warren won the Nobel Prize in Medicine for their findings

The First U.S. Presidential Vaccine Mandate

U.S. President George Washington issued the first presidential vaccine mandate, requiring all soldiers within the continental army to become vaccinated against smallpox on February 5, 1777. 90% of deaths during the American Revolution were due to disease, with smallpox being the most prevalent and difficult pathogen for the military to control. Immunization was viewed as an achievable solution to a virtually insurmountable problem as death from smallpox plunged from 30% to 2% after a becomming immunized. Vaccination, or “variolation” as it was referred to during the era, was achieved by taking a small piece of an active smallpox sore from an infected person, and then introducing it to the person being inoculated via inhalation or by scratching their arm and introducing the virus by touch. The mandate, although initially detested, became highly successful in its pursuit of lowering soldier mortality rate, with 40,000 soldiers vaccinated by the end of 1777

The Study of Bacteriophages in Antibiotic Research and Why They May be the Next Major Scientific Breakthrough

Bacteriophages, which are viral infections that reproduce to target and kill bacteria, were studied in Eastern Europe during the 1950’s by countries which did not have access to western medicine, including antibiotics. In 1 milliliter of sea water, billions of phages are present, with countless different varieties. Phages have tendril like appendages which are used to probe and identify hosts, clinging onto them, then forcing its own deoxyribonucleic acid down into the bacterial host. When this genetic code is introduced, it destroys the bacteria as a direct result. This leads to a chain reaction as hundreds more are produced each time this instance occurs, copies which then fledge out and find hosts of their own, building populations exponentially and wiping out bacterial infections completely. Bacteriophages were found prior to chemical antibiotics but when Penicillin was discovered, because it is so easy to develop and administer, chemical antibiotics became the clear path of choice in medicine with scientists not realizing the severity of this error until decades later. Antibiotics are often broad spectrum which is another reason antibiotic research overshadowed bacteriophagic research as different phages affect different bacteria and are therefore not broad spectrum. Because phages are self-replicating like bacteria, they have the ability to completely annihilate all bacteria presented before them in the same way that bacteria have the ability to totally annihilate their own host as well. Because of this, bacterial infections can be knocked out with 100% efficacy in all cases, regardless of the severity of the the infection, provided the correct phage is alotted enough time to do so. This is a task antibiotics often struggle to achieve and even if achieved, cannot be guaranteed in perpetuity as reinfection or resistance can occur at any time

The Rationale Why Pharmaceutical Organizations are Not Incentivized to Develop Antibiotics and Why This is Dangerous for the Worlds Next Pandemic

Within 5 short years of release, approximatly 20% of antibiotics become subject to resistance from bacterial pathogens which means that antibiotic proliferation is chronologically limited within its life expectancy. Coupled with this, if an antibiotic is highly effective, the scientific and medical community often rally against its usage so that such a tool can be saved in reserve for a global bacterial pandemic. In either scenario, return upon investment is less than what it would be with a different class of medication (e.g. selective serotonin re-uptake inhibitor, statin, hypnotic etc.) which is why pharmaceutical organizations are less interested in research and development dedicated to antibiotic medicine in favor of other, more profitable medication categories. This lack of investment however is myopic and will inevitably backfire upon the pharmaceutical industry as a whole if new antibiotics are not developed because medications used to treat cancer will become less in demand due to the fact that cancer patients are highly likely to acquire an infection during treatment when their immune system is comprised, with this infection often killing the patient if antibiotic solutions are not available. This would expectedly lead to a sharp decline in cancer medication treatment and subsequently pharmaceutical sales of related medications as patients would be likely to adopt living the rest of their life as fully as possible and forgoing treatment as they would be damned if they accept the cancer treatment and develop an infection which kills them but also damned if they don’t accept the treatment and let the cancer run its course which is almost always fatal

To provide comparison of the research, development, and manufacturing contrast between oncology medications and antibiotics, as of 2020, there are currently 800 medications in development for cancer and hypertension whilst only 28 antibiotic medications undergoing that same research phase and development process, with 2 of these antibiotics expected to become fully developed and able to reach the market and patients. The last new antibiotic class, lipopeptides, were introduced in 1984 with a gap referred to as an “antibiotic void” occurring during the 1990’s, 2000’s, 2010’s, and now moving into the 2020’s. The urgency of this threat is projected to become dire within the coming decades, with scientists predicting that by 2050, medicine could potentially come full circle to the pre-antibiotic era, with microbes which are completely and totally resistant to every antibiotic known to medicine

The Future of Body Modification

Near field communication, often abbreviated as “NFC” is the ability for wireless devices to communicate with eachother and has now made its way into the bodies of human beings with some opting to implant small subdermal microchips using a large gauge hypodermic syringe (e.g. 14 – 18 gauge) which is preloaded so that these individuals gain the ability to start their vehicle(s), open their home door locks, send contact information to another persons smartphone etc., wirelessly and without any intervention or effort upon the end user. This adaptation is referred to as “transhuman” as it goes beyond what the biological human body can do by introducing technology which cannot be evolved into existence. Devices have been developed for a number of different purposes (e.g. vibrating when pointed towards magnetic north turning the body into a compass or implanting a small chip containing tritium gas which glows beneath the skin but is radioactive and therefore not battery powered lasting indefinitely as tritium gas has a 12 year half-life etc.). In 2018, at the University of Colorado, Dr. Carson Bruns and his team developed a technology which allows for smart tattooing in that newly and highly specialized tattoo inks will be able to deliver new functions to the artistic medium of tattooing. The first design invented was a tattoo ink which is sensitive to ultraviolet light which allows it to lay invisible under typical lighting conditions and only appear as a blue hue once outside in the presense of sunlight or an artificial ultraviolet light source. This technology would be practical as well as esthetic as it would allow a person to know when they’ve had too much sun exposure while outside. Bruns’ team has also developed tattoo ink which changes color as the temperature of the body changes which again would be functional as well as artistic, acting as a thermometer to indicate when a person has had too much or too little exposure to cold or heat. Nanotechnology is used to engineer and design tattoo particles which have specialized properties and characteristics (e.g. thermal battery and/or storage mechanism). Real world applications could be spurred by this advent like the ability to keep the entire body at a comfortable temperature at all times, regardless of the environment, if the entire body was tattooed, either visibly with color or invisibly with translucent ink. Specially engineered tattooing can also have medical applications such as that of the distribution of a pharmacological medication or hormone which helps regulate biochemistry (e.g. insulin or neural catecholamines to control mood etc.). World militaries may find use with specially engineered tattoos as well, allowing skin to become more resilient to abrasions or epidermal damage. Specialized tattoo pigments are also tactile sensitive in that when touched, they have the ability to turn on or off as well as perform other functions (e.g. manipulate an options menu upon a screen or act as a controller for a game or software etc.). In 2018, billionaire futuristic Elon Musk unveiled Neuralink, a technology which he states provides the ability of “self-directed evolution”. Neuralink will be installed within the human body by using a specialized, robotic hypodermic syringe to inject an ultra thin mesh, referred to as “neuro lace”, into the neurocortex of the brain, to form a body of electrodes which are able to monitor and influence brain function. These microelectrodes will be able read and write onto neurons; a bi-directional information exchange. This will allow for the downloading and uploading of information to and from the internet, wirelessly. This technology will allow for thoughts to be sent between users in the same format that data is shared online during the modern day using peer to peer networking. This technology will also allow for the control of devices, remotely; in principle, telekinesis. Nanotechnology now provides scientists with the technology required to manufacture electronics small enough to become tattooed, which means that in the future, Neuralink will only require a small, cranial tattoo instead of a cranial implant

A Revolutionary Breakthrough in Oncology Treatment

Cancer kills 9,000,000 (9 million) people each year and despite having searched for centuries, a cure has yet to be discovered by scientists. At the center of the immune system is the T cell, a type of leukocyte which respond against bacterial and viral infections alike in an effort to keep their host healthy and alive. T cells determine between threatening and non-threatening foreign and non-foreign bodies within a host by leveraging a molecule upon the surface of all cells referred to as the “T cell receptor”. Jim Allison was the first person to successfully isolate and purify the molecule which recognizes this lock and key model for infectious disease, auto-immune disease, and other innocuous substances within the body be they foreign or internally created. In 1987, French scientist Pierre Golstein and his team discovered a new protein upon the surface of T cells which he named “CTLA-4”. To study CTLA-4 in laboratory rats, Allison had to build and design a rat antibody, a Y shaped protein which would trigger a reaction by CTLA-4. Cancers are mutations and should in theory be visible to the immune system, which is why the scientific community has struggled with the paradox of why tumors go undetected by the immune system for decades. There is no discernible reason as to why the immune system can recognize and resist influenza or any other foreign or domestic body but not cancer. Allison theorized that tumors have evolved an ability to fool the immune system, engaging CTLA-4 which turns on the T cells response to halt its search and destroy measures. Allison hypothesized that if he inserted a Y shaped antibody to block the gap in between the tumor and T cells, the tumor would no longer have its ability to hide, a trait which has been evolved by tumor cells over hundreds of millions of years. This would allow the T cell to infiltrate, attack from within the tumor, shrink, and ultimately kill the growth. Allison spent the next decade trying to turn this revolutionary breakthrough discovery into a medication which could be provided to cancer patients. Allison found Alan Korman, a scientist creating medications for auto-immune disease which provided him with the expert he required to turn this idea into a reality. Korman was tasked with taking the CTLA-4 antibody which Allison and partner Max Krummell developed for laboratory rats, and turn it into a medication which could safely work within human beings with this medication subsequently being named “Ipilimumab” (pronounced “ipi-lim-ooh-mab”). Korman ended up collaborating with a friend from graduate school, Nils Lonberg to accomplish this task. Ipilimumab consists of an intramuscular injection into the leg and a 90 minute intravenous medication drip in comparison to chemotherapy and radiation therapy which take months of treatment to complete and have devastating effects upon overall health as both bad and good tissue are destroyed in an effort to eradicate all tumor cells. Allison’s work with laboratory rats demonstrated that with the help of this newly developed antibody, T cells gained the ability enter into tumors and expand their size in an effort to destroy them from the inside out. This means that the fact that tumors grow initially upon administration is a positive marker and indicative of the medication working as it demonstrates successful infiltration of the tumor cells themselves. Patients often report feeling better after a few treatment sessions, sometimes even a single session, despite computer tomography scans demonstrating that their tumors are growing larger, which under normal circumstances would make a patient feel worse. Some patients even noted increased improvement after having stopped the Ipilimumab treatment, with no further therapy required. On March 25, 2011, the U.S. Food and Drug Administration released approval for Ipilimumab. Ipilimumab and its successors have treated nearly 1,000,000 (1 million) patients worldwide with many of these patients achieving permanent remission which is essentially the definition of having been cured of cancer. Although these medications do not work in every single case, they have definitively demonstrated to be a miracle medication for hundreds of thousands of people thus far. After completing this revolutionary discovery, Allison was awarded the Nobel Prize in Medicine in 2018 for his series of discoveries related to T cells and their ability to halt cancer in its progression in perpetuity