The Comparison of Medieval Gunpowder Explosives toward Modern Day Plastic Explosives

plastic-explosiveDuring the modern day, soldiers use plastic explosives to blast through walls, similar to that of the gunpowder powered cannons of antiquity, but different in the sense that they can be directly applied and finely controlled. Despite these differences, the principle of both weaponry remains the same which is to create a powerful burst of kinetic energy to smash apart solid structures. Soldiers with explosive expertise during the modern day plant explosives in a lowercase “i” or “t” shape format by separating the explosives with a gap in the middle. This design ensures the explosive will blow a hole in the top and the bottom of the blast site, as well as the sides in some instances, leveraging the physics of the shockwaves produced to disrupt the wall and weaken it in the middle. Explosive experts don’t attach plastic explosives at the bottom of walls for two distinct reasons, the first being because the foundation upon the other side of the wall which cannot be viewed has the potential to be higher than the foundation facing the impending soldiers, which means that the explosives would be blasting into solid ground soil which is much less effective than blasting into walls made of concrete or otherwise, and the second being that explosives close to the ground create rubble directly next to the hole created, making forced entry more difficult, especially under siege conditions with active enemy combatants attempting to stop the breach. The main difference between Medieval gunpowder and modern day plastic explosive is the amount of material required to produce the same effect as plastic explosives are an entire order of magnitude more powerful than gunpowder, with 2 kilograms of plastic explosive equating to multiple barrels of gunpowder. Explosives are categorized as either “high explosives” or “low explosives” with high explosives having the front of the chemical reaction travel faster than the speed of sound and low explosives having the front of the chemical reaction produced travel slower than the speed of sound. To provide comparison, modern day C4 plastic explosives have a detonation velocity of 8,092 meters per second whilst gunpowder has a detonation velocity of just 171 – 631 meters per second

The Ancient Lighthouse of Alexandria, Egypt

Lighthouse-of-AlexandriaThe Lighthouse of Alexandria was one of the original 7 Wonders of the Ancient World. Standing more than 350’ tall, the Lighthouse of Alexandria and was clearly observable to passing ships sailing up to 50 kilometers away. Originally built in 280 B.C., after guiding ships into the port and city of Alexandria for 15 centuries, the Lighthouse of Alexandria collapsed in 1323 due to a series of earthquakes which leveled the structure and caused it to tumble into the Mediterranean Sea. The Citadel of Qaitbay (pronounced “kate-bay”), a 500 year old fortress, now sits at the site of the once standing lighthouse with many of the stones within this structure, pieces of the original Lighthouse of Alexandria, installed after being dredged up from the ocean floor. Although the Lighthouse of Alexandria was originally designed to safely bring ships into the port of Alexandria, the Citadel of Qaitbay acted in opposition as a repellent centuries later, designed to keep enemies (e.g. Ottoman Turks) out of Egypt. No ship was permitted the privilege of docking in the Alexandria harbor without forfeiting all books on board for a short period of time until they could be translated and/or copied outright by scribes

The Discovery of the Sunken S.S. Titanic

sunken-TitanicThe S.S. Titanic’s shipwreck site was found by the U.S. Navy whilst embarking upon a clandestine military submarine sea voyage operation in 1982. The intent of the mission was to surpass the Russians on every front, including land, sea, air, and space. Geologist and Navy Captain Robert Ballard was the person who developed the mission idea by suggesting that the U.S. Navy scour the seafloor to gather intelligence and search for evidence of Soviet placed hardware. The original intention of the mission was to locate and recover 2 U.S. Navy submarines which were classified as top secret nuclear attack vessels and lost during the 1960’s. The first submarine was the U.S.S. Scorpion, lost in 1968 with 99 onboard, and the second was the U.S.S. Thresher, lost in 1963 with 129 onboard. Recovery of these vessels during the 1960’s was limited to the Sound Navigation and Ranging technology of the era, commonly abbreviated as “SONAR”. Ballard only had 12 days to locate the S.S. Titanic during the mission without exposing his cover story, a feat which was unable to be completed by the French and the Americans, despite having much longer time spans and multiple expeditions to achieve this goal. Ballard narrowed down the search area to 80 square kilometers and focused towards the south as he believed that ocean currents would have carried sunken debris in that direction. Ballard continued searching for a trail of scattered debris from the S.S. Titanic and on the 9th day of the expedition, with time quickly running out, the operators of the remotely operated vehicle ARGO, found wreckage from a modern iron ship which appeared to be from the early 20th century. It was confirmed shortly after on September 1, 1985 at 12:48 AM that these remains were 1 of the 29 boilers belonging to the S.S. Titanic. It had been 73 years since the S.S. Titanic was last seen, resting nearly 4 kilometers below sea level, with it’s 1500 onboard passengers and crew

The Future Technology of Carbon Nanotubes

carbon-nano-tubeThe atomic structure of carbon, more specifically naturally occurring diamond, is neatly stacked in a cuboid shape. Carbon nanotubes use carbon but instead stack their atoms in a hexagonal shape. The result is a material which weighs virtually nothing, yet is stronger than any material known upon Earth, including poly-paraphenylene terephthalamide, more commonly referred to as “Kevlar”, zylon, and titanium. Some scientists have argued that carbon nanotubes will most likely be the strongest substance in the known universe and that nothing will ever have the ability to surpass its strength. Carbon nanotubes have a strength of 200 gigapascals; to provide frame of reference, the strongest materials known to civilization have a strength of approximately 5 gigapascals. 1 gigapascal, which is commonly abbreviated as “GPa”, is equal to 1,000,000,000 (1 billion) pascals, and 1 pascal, which is commonly abbreviated as “Pa”, is the SI unit for pressure defined as “1 newton per 1 square meter”. If a space elevator ribbon made of carbon nanotubes stretching 100 kilometers were ever to break (e.g. the counterweight above breaking), it would gently float down to Earth because it would only weighs 7 kilograms per every 1 kilometre of length

The Indigenous People of Tanna Island, Vanuatu and Their Religious Cult Honoring and Deifying the U.S. Military

Tanna-Island Vanuatu-Religious-CultOn Tanna Island, Vanuatu, every year on February 15th, residents of the Pacific Ocean island chain engage in a military parade with the term “USA” painted in red or tattooed upon the chest of men who carry large bamboo spears with red tipped, pointed ends, a tradition which began more than 60 years ago, inspired by events which took place during World War II, when the U.S. military descended upon the island with modern machinery and supplies (e.g. canned food and cotton clothing etc.). The native inhabitants were in awe of these technologies which lead them to believe that the Americans were in possession of magic. Science fiction author Arthur Charles Clarke’s Third Law states that “any sufficiently advanced technology is indistinguishable from magic”. When World War II ended, the U.S. closed its bases in Vanuatu and left seemingly overnight, taking their technologies and goods with them. In honor of U.S. soldiers in the hope that it would entice them to return, the indigenous people created a cult which honored those who had appeared from beyond the horizon. These inhabitants started to create replica U.S. military items (e.g. wooden bandolier designed to mimic artillery shell bandoliers, straw aircraft, U.S. military insignia shoulder patches denoting rank which are painted onto skin etc.). Virtually all religions begin with a miraculous event (e.g. comet in the sky fortelling of calamity) followed by the creation of monuments which exemplify the event observed (e.g. large statue of the Buddha as a deity). Religions developed by cultures which worship other beings which have descended upon them are often referred to as a “cargo cult”

Galileo Galilei’s Telescope Design Improvement upon the Dutch Spyglass Design

Galileo-Galilei-telescopeIt had been known since the first spectacles were produced in the middle of the 13th century, that glass was capable of bending light, a property which no other known material of the period could achieve. The Dutch spyglass worked upon this very principal, arranging lenses with careful attention to detail to create a compounding magnification effect. If light hits a plano-convex (pronounced “play-noh”) lens, which is flat upon one side and convex upon the other, the same formation used for those who suffer from hyperopia, rays of light streaming inward are bent toward eachother, eventually meeting and converging at a specific triangular point. Right before this focal point, Galilei improved the original Dutch design by placing his second lens, an ocular lens which is plano-concave, meaning flat upon one side and concave upon the other, the same formation used for those who suffer from myopia. This secondary lens pushes the bent rays of converging light back out again so that they can hit the eye and provide a clear image. The eye focuses this light upon the retina so that the observer can view the image produced by the spyglass. The magnification power of a telescope depends upon the ratio between the focal lengths of the lenses, with these distances marked as F1 for the distance between the front of the spyglass and the plano-concave lens, and F2 from the plano-concave lens toward the back of the spyglass. The largest difficulty impeding Galilei was the grinding down process of his convex lens, in an attempt to make it as shallow as possible to maximize the length of the F1 partition, as the longer the distance is, the greater the magnification will be. Within a few weeks of developing this new technology, Galilei’s first telescope had a clear magnification of 8x, far exceeding the power of the original Dutch spyglass. On August 21, 1609, Galilei climbed a Venice bell tower to meet up with Venetian nobles and senators so that he could display his new technology. This new bleeding edge feat of engineering permitted Venetians to spot sailing ships 2 hours earlier than if they had used the naked eye. 3 days after the event, Galilei gifted his telescope to the Duke of Venice and was afforded a guaranteed job for life in exchange, with this salary equating to double his original income. With his finances secured, Galilei went on to develop and produce even more powerful telescopes

The Scientific Reason Conspiracy Theories are Subscribed to

social-media-appsConspiracy theories are adopted because those who believe them, produce an alternate frame of reality which tends to make sense out of a scenario in a manner which coincides with the world view of the person believing the propaganda. Within the discipline of cognitive psychology, a phenomenon referred to as the “Illusory Truth Effect” exists in which hearing a statement repeatedly, makes the statement appear more plausible. Scientists have examined this principle by having subjects read news stories, then distracting the subjects with unrelated material (e.g random surveys), then once again exposing the subjects to more news stories. Scientists found that when subjects are asked to rate the accuracy of news stories read during the second round, they are much more likely to rate information as credible if having seen it once before. For a news article or headline which has not been observed before, these snippets of information are only rated as true 18% of the time but for a news article or headline which has been observed before (e.g. prior to the intermission random poll), subjects are more likely to identify this information as factual 24% of the time. Social media is a great example of this principal being exploited. It’s not that logic and reason are being hijacked when people utilize social media to obtain news, it’s that participants within the social media ecosystem are not bothering to apply logic and reason in the first place, applying intuitive gut responses to news consumed. Surprisingly, scientists have found that when subjects stop judging intuitively, and begin using logic and reason, with evidence based argument and rationales, they become substantially better at determining truth from misinformation

The Rationale Why Pharmaceutical Organizations are Not Incentivized to Develop Antibiotics and Why This is Dangerous for the Worlds Next Pandemic

antibiotic-resistanceWithin 5 short years of release, approximatly 20% of antibiotics become subject to resistance from bacterial pathogens which means that antibiotic proliferation is chronologically limited within its life expectancy. Coupled with this, if an antibiotic is highly effective, the scientific and medical community often rally against its usage so that such a tool can be saved in reserve for a global bacterial pandemic. In either scenario, return upon investment is less than what it would be with a different class of medication (e.g. selective serotonin re-uptake inhibitor, statin, hypnotic etc.) which is why pharmaceutical organizations are less interested in research and development dedicated to antibiotic medicine in favor of other, more profitable medication categories. This lack of investment however is myopic and will inevitably backfire upon the pharmaceutical industry as a whole if new antibiotics are not developed because medications used to treat cancer will become less in demand due to the fact that cancer patients are highly likely to acquire an infection during treatment when their immune system is comprised, with this infection often killing the patient if antibiotic solutions are not available. This would expectedly lead to a sharp decline in cancer medication treatment and subsequently pharmaceutical sales of related medications as patients would be likely to adopt living the rest of their life as fully as possible and forgoing treatment as they would be damned if they accept the cancer treatment and develop an infection which kills them but also damned if they don’t accept the treatment and let the cancer run its course which is almost always fatal

To provide comparison of the research, development, and manufacturing contrast between oncology medications and antibiotics, as of 2020, there are currently 800 medications in development for cancer and hypertension whilst only 28 antibiotic medications undergoing that same research phase and development process, with 2 of these antibiotics expected to become fully developed and able to reach the market and patients. The last new antibiotic class, lipopeptides, were introduced in 1984 with a gap referred to as an “antibiotic void” occurring during the 1990’s, 2000’s, 2010’s, and now moving into the 2020’s. The urgency of this threat is projected to become dire within the coming decades, with scientists predicting that by 2050, medicine could potentially come full circle to the pre-antibiotic era, with microbes which are completely and totally resistant to every antibiotic known to medicine

The Mathematics Behind Why Rockets Can Escape The Gravitational Pull of the Earth

Konstantin-TsiolkovskyRobert Goddard’s liquid rocket never reached the 3 kilometer mark because of Tsiolkovsky’s Rocket Equation named after Soviet scientist Konstantin Tsiolkovsky (pronounced “con-stan-tyin tsel-kov-skee”). This equation states that as fuel increases for faster and further voyages, so too does the weight, becoming increasingly heavy as more and more fuel is added. Tsiolkovsky took into account the velocity of a rocket alongside its mass of payload, mass of fuel, and the mass of the rocket itself. The longer the engine burns, the more velocity the rocket will have, however longer burning means more fuel which adds weight and makes it more difficult to push upwards. To travel fast enough to deliver a rocket to space, most of the craft must be fuel. Scientists have battled with this question for decades and although mathematical constructs have been developed to explain the relationship between weight and thrust, no one has yet to develop an idea to get around this problem with currently available technologies. The equation developed to explain this limitation of space travel is △V^R = V^E x log^e (M^P + M^F + M^R / M^P + M^R). This effectively states that only a tiny portion of a rocket can be used to deliver payload, with notable cases being the Apollo missions which employed enormous rockets to carry just a few small astronauts and the things they needed into space. Tsiolkovsky theorized this in the beginning of the 20th century as his calculations demonstrated that kerosine wouldn’t be enough to go from the Earth to the moon with a single craft