The Tradition and Method of Selecting a New Pope

Vatican-SmokeMurder, bribery, and nepotism were the primary ways in which a pope would enter or exit the papacy prior to the 12th century. It was during the 12th century that cardinals who were senior clergy in Rome, Italy created what they referred to as a “college” to act as a council which would regulate the elections of future popes. This system became referred to as the “conclave” which refers to the practice of a “private meeting assembly of cardinals for the election of a pope”. The term “conclave” was chosen because of the Latin term “con” with means “with” and the Latin term “clavin” which means “key”, more literally translating to “locked room” as cardinals would be locked away to avoid the interference of outside politics. As of 1274 A.D., all papal elections are held in secret, adhering to this strict tradition in an attempt to remain unbiased. Elections are held again and again until a 66% majority is achieved at which point white smoke is released to signify that the council has reached a decision. The election ballets from each voting round are burned so that the election is completely anonymous and private, even for those who are present in the meeting. It is this burning which creates the iconography of the smoke being released to signify a decision. In the Middle Ages, cardinals added damp straw to the ballots which created black smoke to signify that a pope had not yet been chosen. White smoke was created by burning the paper alone, but during the modern day, chemical additives are added to ensure the white smoke color is as unambiguous as possible

The Comparison of Medieval Gunpowder Explosives toward Modern Day Plastic Explosives

plastic-explosiveDuring the modern day, soldiers use plastic explosives to blast through walls, similar to that of the gunpowder powered cannons of antiquity, but different in the sense that they can be directly applied and finely controlled. Despite these differences, the principle of both weaponry remains the same which is to create a powerful burst of kinetic energy to smash apart solid structures. Soldiers with explosive expertise during the modern day plant explosives in a lowercase “i” or “t” shape format by separating the explosives with a gap in the middle. This design ensures the explosive will blow a hole in the top and the bottom of the blast site, as well as the sides in some instances, leveraging the physics of the shockwaves produced to disrupt the wall and weaken it in the middle. Explosive experts don’t attach plastic explosives at the bottom of walls for two distinct reasons, the first being because the foundation upon the other side of the wall which cannot be viewed has the potential to be higher than the foundation facing the impending soldiers, which means that the explosives would be blasting into solid ground soil which is much less effective than blasting into walls made of concrete or otherwise, and the second being that explosives close to the ground create rubble directly next to the hole created, making forced entry more difficult, especially under siege conditions with active enemy combatants attempting to stop the breach. The main difference between Medieval gunpowder and modern day plastic explosive is the amount of material required to produce the same effect as plastic explosives are an entire order of magnitude more powerful than gunpowder, with 2 kilograms of plastic explosive equating to multiple barrels of gunpowder. Explosives are categorized as either “high explosives” or “low explosives” with high explosives having the front of the chemical reaction travel faster than the speed of sound and low explosives having the front of the chemical reaction produced travel slower than the speed of sound. To provide comparison, modern day C4 plastic explosives have a detonation velocity of 8,092 meters per second whilst gunpowder has a detonation velocity of just 171 – 631 meters per second

The Rationale Why Pharmaceutical Organizations are Not Incentivized to Develop Antibiotics and Why This is Dangerous for the Worlds Next Pandemic

antibiotic-resistanceWithin 5 short years of release, approximatly 20% of antibiotics become subject to resistance from bacterial pathogens which means that antibiotic proliferation is chronologically limited within its life expectancy. Coupled with this, if an antibiotic is highly effective, the scientific and medical community often rally against its usage so that such a tool can be saved in reserve for a global bacterial pandemic. In either scenario, return upon investment is less than what it would be with a different class of medication (e.g. selective serotonin re-uptake inhibitor, statin, hypnotic etc.) which is why pharmaceutical organizations are less interested in research and development dedicated to antibiotic medicine in favor of other, more profitable medication categories. This lack of investment however is myopic and will inevitably backfire upon the pharmaceutical industry as a whole if new antibiotics are not developed because medications used to treat cancer will become less in demand due to the fact that cancer patients are highly likely to acquire an infection during treatment when their immune system is comprised, with this infection often killing the patient if antibiotic solutions are not available. This would expectedly lead to a sharp decline in cancer medication treatment and subsequently pharmaceutical sales of related medications as patients would be likely to adopt living the rest of their life as fully as possible and forgoing treatment as they would be damned if they accept the cancer treatment and develop an infection which kills them but also damned if they don’t accept the treatment and let the cancer run its course which is almost always fatal

To provide comparison of the research, development, and manufacturing contrast between oncology medications and antibiotics, as of 2020, there are currently 800 medications in development for cancer and hypertension whilst only 28 antibiotic medications undergoing that same research phase and development process, with 2 of these antibiotics expected to become fully developed and able to reach the market and patients. The last new antibiotic class, lipopeptides, were introduced in 1984 with a gap referred to as an “antibiotic void” occurring during the 1990’s, 2000’s, 2010’s, and now moving into the 2020’s. The urgency of this threat is projected to become dire within the coming decades, with scientists predicting that by 2050, medicine could potentially come full circle to the pre-antibiotic era, with microbes which are completely and totally resistant to every antibiotic known to medicine

The Evolutionary Reason Human Beings Seek Violence and Conflict


Whilst observing chimpanzees in the wild, Jane Goodall noticed her observed chimpanzee community beginning to divide amongst itself, with some members choosing to spend more time in the northern region of the jungle and others in the south. By separating themselves, these chimpanzees inherently relinquished their right to be recognized as part of their previous clan. This once seemingly peaceful community began to become heavily engaged within primitive warfare and conflict, with the entire community which had moved south annihilated into oblivion by their northern counterparts. Goodall stated upon record that it took her considerable time to reconcile this brutality, as she had always thought of chimpanzees akin to human beings however better, kinder, and gentler. Goodall believed that conflict was a human invention, but eventually realized and accepted that the dark and cruel side of human nature was deeply embedded within the human genome and inherited from primate ancestors. It is most probable that a propensity for brutality, violence, and conflict has been hard coded into human beings genetically, at the fundamental level of deoxyribonucleic acid which create proteins, which produce neurons, and subsequently unique neural traits, such as a propensity for violence behavior(s). It would be advantageous for evolution to have evolved such traits because if a person (or animal) is being attacked, the ability to fight back with deadly force is expediently beneficial. This is believed by most scientists to be the reason why such traits have evolved within human beings. It should be noted, prior to Goodall’s work, scientists had no knowledge of chimpanzees engaging in warfare and/or hunting practices, which makes her work groundbreaking and revolutionary to say the least as it provides unique introspective into human behavior(s)

The First Use of Forensic Science to Resolve a Murder


Sun Tzu’s text the “Washing Away of Wrongs”, written in 1235 A.D., is the first text which records forensic analysis being used to resolve a criminal case. The murder of a farmer prompted a local judge to demand that everyone in the village lay down their sickle before him. While every cythe appeared to be clean, the judge watched for insects as he understood that insects would be attracted to and by consequence fly around within proximity of a blade with fresh blood still attached to it, even if the blood was physically removed to the point at which it could no longer be observed by the human eye. This innovative technique allowed the judge to figure out which member of the community committed the homicide with forensic certainty

A Revolutionary Breakthrough in Oncology Treatment


Cancer kills 9,000,000 (9 million) people each year and despite having searched for centuries, a cure has yet to be discovered by scientists. At the center of the immune system is the T cell, a type of leukocyte which respond against bacterial and viral infections alike in an effort to keep their host healthy and alive. T cells determine between threatening and non-threatening foreign and non-foreign bodies within a host by leveraging a molecule upon the surface of all cells referred to as the “T cell receptor”. Jim Allison was the first person to successfully isolate and purify the molecule which recognizes this lock and key model for infectious disease, auto-immune disease, and other innocuous substances within the body be they foreign or internally created. In 1987, French scientist Pierre Golstein and his team discovered a new protein upon the surface of T cells which he named “CTLA-4”. To study CTLA-4 in laboratory rats, Allison had to build and design a rat antibody, a Y shaped protein which would trigger a reaction by CTLA-4. Cancers are mutations and should in theory be visible to the immune system, which is why the scientific community has struggled with the paradox of why tumors go undetected by the immune system for decades. There is no discernible reason as to why the immune system can recognize and resist influenza or any other foreign or domestic body but not cancer. Allison theorized that tumors have evolved an ability to fool the immune system, engaging CTLA-4 which turns on the T cells response to halt its search and destroy measures. Allison hypothesized that if he inserted a Y shaped antibody to block the gap in between the tumor and T cells, the tumor would no longer have its ability to hide, a trait which has been evolved by tumor cells over hundreds of millions of years. This would allow the T cell to infiltrate, attack from within the tumor, shrink, and ultimately kill the growth. Allison spent the next decade trying to turn this revolutionary breakthrough discovery into a medication which could be provided to cancer patients. Allison found Alan Korman, a scientist creating medications for auto-immune disease which provided him with the expert he required to turn this idea into a reality. Korman was tasked with taking the CTLA-4 antibody which Allison and partner Max Krummell developed for laboratory rats, and turn it into a medication which could safely work within human beings with this medication subsequently being named “Ipilimumab” (pronounced “ipi-lim-ooh-mab”). Korman ended up collaborating with a friend from graduate school, Nils Lonberg to accomplish this task. Ipilimumab consists of an intramuscular injection into the leg and a 90 minute intravenous medication drip in comparison to chemotherapy and radiation therapy which take months of treatment to complete and have devastating effects upon overall health as both bad and good tissue are destroyed in an effort to eradicate all tumor cells. Allison’s work with laboratory rats demonstrated that with the help of this newly developed antibody, T cells gained the ability enter into tumors and expand their size in an effort to destroy them from the inside out. This means that the fact that tumors grow initially upon administration is a positive marker and indicative of the medication working as it demonstrates successful infiltration of the tumor cells themselves. Patients often report feeling better after a few treatment sessions, sometimes even a single session, despite computer tomography scans demonstrating that their tumors are growing larger, which under normal circumstances would make a patient feel worse. Some patients even noted increased improvement after having stopped the Ipilimumab treatment, with no further therapy required. On March 25, 2011, the U.S. Food and Drug Administration released approval for Ipilimumab. Ipilimumab and its successors have treated nearly 1,000,000 (1 million) patients worldwide with many of these patients achieving permanent remission which is essentially the definition of having been cured of cancer. Although these medications do not work in every single case, they have definitively demonstrated to be a miracle medication for hundreds of thousands of people thus far. After completing this revolutionary discovery, Allison was awarded the Nobel Prize in Medicine in 2018 for his series of discoveries related to T cells and their ability to halt cancer in its progression in perpetuity

Sweden’s Major Contributions to Vehicular Safety Standards Worldwide


In 1959, Nils Bohlin (pronounced “neels bow-leen”) created the 3 point seatbelt while working for Volvo, an invention which Volvo intentionally designed to be patent free so that the advent could be utilized and implemented globally in a concerted effort to save lives everywhere. This was one of the first examples of open source technology in business and manufacturing. It’s been estimated that the seatbelt has saved more than 1,000,000 (1 million) lives over the past 40 years as of 2020. Swedish company Autoliv (pronounced “ow-tow-leeve”) furthered this pursuit towards safety by creating the seatbelt pre-tensioner which instantaneously reels in seatbelt slack during a vehicular accident and has also helped to design newer, better airbag systems and advanced artificial intelligence automobile visual systems

The Spanish Flu Pandemic of 1918 in London, England


At the end of World War I, soldiers coming back to London, England from the Western Front brought with them a particularly infectious version of influenza referred to as the “Spanish Flu”. Exact metrics are unknown because of poor data collection during the early 20th century but an estimated 50,000,000 (50 million) deaths occurred, 3x as many people than that which died during the entire span of World War I. Spanish Flu had its most devastating blitzkrieg upon London in the autumn of 1918, as thousands civilians and soldiers, weakened from 4.5 years of war, became ill within a few short days of Armistice Day. Spanish Flu works quickly to destroy the lungs of healthy victims, with those who contracted the pathogen feeling fine in the morning and often found dead, later that same evening. In 1918, 320 people died of Spanish Flu in London, but during 1919, Spanish Flu had a resurgence and exploded in severity with 16,000 – 23,000 people killed, a surge which caused a shortage of gravediggers and coffins, classifying Spanish Flu as the worst epidemic in living memory. The Spanish Flu outbreak came to an end in May of 1919 once enough of the British population had experienced the infection and either been killed or having survived, becoming immune to the point that the disease could no longer be passed through hosts efficiently enough to continue its spread

The Guaranteed Path to Heaven for Muslims and its Relation to Najaf, Iraq and Celebrity Undertaker Ali al-Amiya


Shia Muslims believe that to be buried in Najaf, Iraq, guarantees a path to heaven, with many industries related to death found within the city including the manufacturing and provision of burial plots, caskets, grave stones, and grave digging, ironically with those involved, making a living from death. The largest cemetery in the world is Wadi al-Salam which means the “Valley of Peace” in Arabic, with over 5,000,000 (5 million) gravesites. Ali al-Amiya, the most famous person within this Iraqi industry, works at this cemetery as an undertaker. Traditionally, caskets are white, but al-Amiya started the trend of using black caskets. al-Amiya is famous because of his distinctive tombstone designs, innovative funeral services, and because of the way he digs graves. al-Amiya has over 800,000 followers upon Facebook and has a catchphrase that is known by all Iraqis which is, “who is going to bury you like the Prophet Mohammad? Ali al-Amiya!”. al-Amiya offers heavily discounted or free burials for martyrs and the extremely impoverished. al-Amiya is vehemently disliked by most other undertakers within the industry and has nearly been a victim of multiple sting operations in which prostitutes were sent to solicit him as well as physical threats upon his life and his family’s. Modern, progressive thinking undertakers like al-Amiya face resentment in Iraq but the rise of social media has helped combat this animosity. In 2017, a survey found that 85% of Iraqis use social media, specifically Facebook which has demonstrated instrumental in altering public perceptions of Islamic burial traditions