The Causation and Cure for Colorblindness


Being colorblind is more difficult than most people believe as those affected often cannot match clothing colors, tell when fruit is ripe, tell when meat is cooked, or tell when traffic lights are various colors in certain lighting conditions (e.g. flashing red being mistaken for flashing yellow). Color vision is trichromatic with 3 types of cone cells within the eyes which consist of blue, green, and red, which are sensitive to short, medium, and long wavelengths of light, with each cone permitting an observer to view approximately 100 different shades. When all shades are combined, the human eye can observe approximately 1,000,000 (1 million) different colors. Colorblindness can stem from faulty cone cells or an interruption between the pathway of the cones and the brain. Colorblindness has caused vehicular deaths due to accidents around the world which have occurred most often because a driver perceived a light as yellow when it was red in reality. Neuroscientist Professor Jay Neitz (pronounced “nites”), a color researcher at the University of Washington in the U.S. and his spouse, geneticist Maureen Neitz, have teamed up to try and cure colorblindness. Gene therapy is currently being researched around the world and scientists believe that colorblindness will be cured using gene therapy in the near future. Male squirrel monkeys are naturally red-green colorblind and gene studies have demonstrated that these monkeys can be afforded color vision after having a gene delivered into the cone cells within the eye. The gene produced transforms a subset of the green cones within the male squirrel monkeys eyes to force them to become red cones, red cones which have hijacked the squirrel monkeys neural circuitry which was previously utilized solely for blue-yellow color vision, essentially bifurcating into red-green cones and blue-yellow cones so that the monkeys examined developed full color vision like human beings as of 2019. The Neitz’s confirmed this by providing male squirrel monkeys colorblind examinations which when answered correctly, delivered a small treat of food after having undergone gene therapy. Trials in human beings have yet to start as the Neitz’s believe that this step is still a few years away, but expected to initiate during the 2020’s

The Danger of Air Pollution Gaining Access to the Brain


The reason pollution has a metallic taste and scent and that it burns the eyes when exposed to it is because the particles of air pollution are tiny enough that they can travel through nerve cells, and gain direct entry to the brain, where the olfactory bulbar meets the frontal cortex, as there is no blood-brain barrier at this point. The body protects itself through the blood-brain barrier, which means that particles within the bloodstream, cannot get directly into the brain. This system has a slight flaw however as the nose acts as a direct conduit for incredibly tiny particles to bypass this security mechanism

Herbivore vs. Carnivore Vision


Animals which have eyes placed upon the sides of their heads (e.g. squirrels, zebras, frogs etc.) are typically herbivores and prey for carnivores. Herbivores need to have their field of vision constantly focused upon what’s going on around them. Animals which have eyes on the front of their heads (e.g. owls, tigers, human beings etc.) are usually carnivores. Carnivores are predators and because of this they need to constantly be focused upon what is in front of them for activities like chasing down prey in an attempt to capture and eventually kill what they catch. Human beings can demonstrate this difference for themselves by placing one’s hands in front of their eyes as they would binoculars, then crossing their wrists and cupping their hands so that they see only from the sides of their face. This demonstrates the different abilities predator and prey have in respect to what is in focus within a particular classifications field of vision. Panoramic vantage points which herbivore prey have allow for more information to be taken in at once, but binocular vantage points which carnivorous predators have allow for depth perception which most herbivores do not have, and even when they do have it, it’s accuracy is highly limited