The mathematical concept of algorithms were developed by and subsequently named after Muhammad ibn Musa al-Khwarizmi (pronounced “moo-ham-mad ih-bin moo-sah al kwar-iz-me”), an Islamic scholar who lived during the 8th century. The concept of algorithms arrived in Europe in the 12th century and al-Khwarizmi’s name was translated to Latin which is where the term “algorithm” is derived. al-Khwarizmi also introduced the western world to the decimal system and introduced reduction and balancing methods (e.g. like and unlike terms) causing al-Khwarizmi to become referred to as the ”father and founder of algebra”. The term “algebra” is derived from the Arabic term “al-jabr” which means “reunion of broken parts”. al-Khwarizmi invented and used algebra to solve quadratic equations and it has been stated throughout history that the ideas that al-Khwarizmi developed, helped usher in the European Renaissance during the 14th, 15th, and 16th centuries

# Tag: mathematic

# Mathematical Evidence of the Observable Universe Actually Being Part of a Multiverse

There are 10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 or 10^{80} or 100 quinquavigintillion subatomic particles in the universe, often referred to as the “Eddington number” which means that mathematically speaking, eventually after shuffling these particles over and over, the same result is bound to occur. This is precisely why the theory of the multiverse appears to be valid. These particles cannot be rearranged an infinite amount of times and therefore identical copies of the observable universe surely must show up in other parallel universes, as well as countless variations of the universe in which conditions are similar to the observable universe, but still different in some significant or insignificant manner. In a multiverse scenario, every single possible outcome is played out. After an estimated 10^{10^100} or 1 googolplex (1 googol being 10 with 100 zeros behind it and a googolplex being 10 with 1 googol zeros behind it) meters away from the observable universe in terms of linear measurable distance in space, another universe should theoretically be in existence already, a universe which is identical to the observable universe in every way imaginable. Because nearly every universe is uniquely different, the laws of physics could and should be vastly contrasting to what an observer within the observable universe experiences. It is estimated that there are between 10^{10^16} – 10^{10^10^7} or 100 septentrigintillion – 100 trecenquattuortrigintillion different universes. This estimate is predicated upon the fact that the amount of information which a single individual can absorb is 10,000,000,000,000,000 or 10^{16} or 10 quadrillion bits of data within their lifetime, which is equivalent to 10^{10^16} or 100 septentrigintillion configurations, and this means that the human brain is physically incapable of distinguishing more than 10^{10^16 }or 100 septentrigintillion universes