The reason gender reassignment surgery is possible is because all human beings begin life with the same anatomy, with the ovaries starting from the gonadal ridge, becoming testicles if they drop and remaining as ovaries if they do not. In addition to this, the clitoris is effectively a short penis as both genitalia are physically and anatomically identical (e.g. nerve ending bundles, interior connection and placement, sexual function etc.). When male anatomy is transitioned into female anatomy, a reversal of embryology occurs. When a biological male transitions to become female, during surgery, the scrotal skin is excised after which it is opened to form the labia majora and labia minora, and part of it is utilized to line the new vaginal cavity. The testicles are removed in their entirety and the cliterous is formed using the head of the penis which allows the cliterous to function as it does upon the body of a biological female, with most patients able to orgasm post surgery once healed. The volume of erectile tissue is decreased as the penis is effectively folded over, but because the nerves and arteries remain attached, sensation remains. Once the cliterous is sutured into place, the vaginal tunnel is created which is the most difficult aspect of the entire surgical procedure. A space is created between the bladder and the rectum which is difficult as both structures contain significant blood supply and injury to these systems can cause major complications. A skin graft from the scrotum is then set in place onto a cylindrical mold and sutured around it once the cavity is produced so that it can be implanted. Hair follicles are obliterated as they will continue to grow internally if not removed which would cause further complications. The mold used is an approximation of the average male penis which allows surgeons to create a cavity large enough to allow for sexual intercourse if desired. Small cosmetic details are taken care of after which the patient is sutured and migrated out of the operating theater so that they can be left to rest and reawaken after the anesthesia administered wears off
Tag: Medicine
How Methamphetamine Works Within the Human Brain
Methamphetamine causes a rush of dopamine to be released which provides euphoria with a rapid onset. Typically the brain has a dopamine level of 50 – 75 units, but when methamphetamine is present within the system, this value bounds to become 900 – 1250 units, larger than any other drug. Over time, methamphetamine destroys the brain’s ability to produce dopamine naturally, allowing levels to fall below baseline, causing a person who uses the substance to crave more and more to feel normal and balanced. To provide a scale of reference, cocaine typically produces dopamine levels of 100 – 350 units
The Most Important Intervention to Avoid Suicide During a Mental Health Crisis
In the U.S., most firearm related deaths are not homicides but rather suicides, and more people commit suicide by firearm then by all other methods combined. The timeframe of a suicidal crisis is typically 1 – 10 minutes in duration, and having a firearm at close reach increases the likelihood of a successful suicide attempt by 95%. If a firearm is not present during a moment of suicidal crisis, and another method is used to attempt suicide, this statistic plunges dramatically to become a 5% – 10% success rate. This is important as the means by which someone takes their life matters. Living in a firearm free home is a critically important aspect of suicide prevention for those who are at risk. It is recommended that during a crisis event, all firearms are unloaded and taken to a trusted friend, with all prescription, over the counter medications, and household poisons (eg. Draino etc.) locked away as well
The Etymology of the Gaelic Spirit Whisky
The Gaelic term “uisce beatha” (pronounced “ish-kah bahh”) translates to mean “water of life” and was originally intended to be used as the name for Scottish whisky. The term was shortened to “uisce” (pronounced “oosh-key”) which is where the English term “whisky” is derived
How Ritalin Acquired its Name
Methylphenidate, more commonly known by its brand name “Ritalin”, was developed in 1944 by Swiss scientist Leandro Panizzon. Panizzon created the medication in part as he wanted his wife Marguerite to become more energized, play better tennis, lose weight, and help improve her hypotension. Panizzon created the term “Ritaline” (pronounced “ree-tah-lean”) for his newly invented medication, named as such for his wife Marguerite (pronounced “mar-gah-reet”) as Marguerite always referred to herself using the shortened version of her name, “Rita”. When Chemische Industrie Basel, more commonly known by the acronym “CIBA”, the company which owned the research, released methylphenidate into the marketplace, the “e” was discarded from “Ritaline” to create “Ritalin” (pronounced “ree-tah-lin”)
The Argument Against Stem Cell Research and Why This Will No Longer be a Problem in the Future
The reason stem cell research is controversial for some is because it is viewed as damaging and harvesting from one life to help another. This argument may be obsolete in the future as scientists are now discovering ways to create stem cells from cells within the body (e.g. skin cells etc.). The traditional method to create a stem cell was to take a skin cell, remove the deoxyribonucleic acid from its nucleus, placing it into an egg which does not have deoxyribonucleic acid but is capable of changing deoxyribonucleic acid, turning it into a stem cell which has the patients genome ascribed unto it. The new method involves placing 4 genes into the nucleus of the skin cell and allowing time to pass, as the genes reorganize the deoxyribonucleic acid so that it begins to appear as stem cell deoxyribonucleic acid, which changes the skin cell and causes it to shrink, losing its outside, converting it into an embryonic stem cell with the only difference between this method and traditional embryonic stem cell creation method being that this technique contains the deoxyribonucleic acid of the patient it is being inserted into. The 4 genes inserted into the cell create 4 proteins which exist naturally within an egg. These proteins trigger the skin cell deoxyribonucleic acid to arrange itself identically to how it would within an embryonic stem cell. Scientists refer to this type of cell as “induced pluripotent stem cells”, commonly abbreviated as “IPS cells”. Ideally, scientists want induced pluripotent stem cells to function identically to natural embryonic stem cells, avoiding the creation of unwanted cells which can lead to cancer. Researchers have discovered that some laboratory created stem cells fail to carry out the task provided and worse yet, some cause cancer to develop. Scientists are currently pursuing 2 paths to alleviate this problem, the first being the attempt to develop induced pluripotent stem cells which function identically to natural embryonic stem cells and the second being to create a system to recognize which induced pluripotent stem cells will fail in an effort to exclude these cells from being inserted into the human body
The Myth of Python Snakes Strangling Prey
It is a myth that pythons suffocate their prey into submission and eventual death as they are technically causing obstructive shock of the circulatory system. This is performed by creating force pressure capable of exceeding the ability of the heart to compress, with this pressure focused tightly within the center of the heart, causing death as a direct result. As soon as pressure is elevated above what the heart utilizes to pump and eject blood throughout the circulatory system, the cardiac system becomes unable to eject blood causing prey to pass out within 10 – 20 seconds, similar in structure to how a headlock cuts off oxygen from the brain and causes a human opponent to pass out. As a python coils, it begins contracting its muscles to generate this tremendous crush pressure, referred to as “circumferential pressure”. To provide frame of reference, circumferential pressure is the type of pressure applied when a saturated cloth is rung out to expel all liquid. The blood pressure of prey typically doubles in stature after being constricted (e.g. moving from 120/80 to 250/160 to 300/200 over the course of 12.5 minutes), enough to cause syncope, a cerebral vascular accident, and death in most mammals. Sphygmomanometers typically exert 140 – 160 millimeters of mercury during a routine blood pressure examination, enough to cause blood perfusion to be cut off during measurement and pain to develop if the duration of the examination is extended for any reason. Python snakes are capable of applying 2x – 3x this rate of pressure, directly upon the neck or thorax of their prey. It is currently unknown if this ability can be increased when required (e.g. emergency situation of an animal escaping etc.)
The Coca Leaf Extraction Process to Manufacture Cocaine
The cocaine extraction process is complicated but begins with workers shredding the leaves of the coca plant into fine particulate with machinery (e.g. weed trimmer etc.) after which cement powder is added, then sulphuric acid dissolved in water, with the leaves then being placed into an oil drum and doused with gasoline. The mixture is left to sit for an extended period of time so that the cocaine itself can be extracted from the coca leaf. The oil drum mixture is stirred continuously using a large rod and then poured through a filter into another container where battery acid is introduced. The battery acid is sulphuric acid making it similar to the first few steps but it is slightly different as it is diluted with water to become no greater than a 37% concentrate. Battery acid helps to separate the cocaine liquid from the gasoline, with 90% of the barrel being gasoline and 10% at the bottom being pure liquid cocaine. Because the gasoline and liquid cocaine have different specific densities, plantation workers place a hose into the bottom of the barrel so that the liquid cocaine can be extracted, either using a pump or gravity by manually sucking on the hose until liquid cocaine starts flowing through. Pure liquid cocaine is clear like water, and has an acidic, bitter, strong taste. Sodium bicarbonate is then added as it helps to eradicate the excess gasoline and battery acid which remains and turns the liquid white. Once the liquid is dried, it begins to resemble cocaine but the process is not yet complete. The dried powder is then cooked on a stove top and stirred continuously to remove further impurities, the top layer is then removed the same way soup skin is removed with a brown colored liquid left remaining which is cocaine. The brown liquid is spread onto a baking pan and left to dry. It is this paste that is passed onto drug cartels to then be distributed internationally
Textile Pollution of the Citarum River in Indonesia
The Citarum River (pronounced “chit-ah-rum”) in Indonesia is considered to be the most heavily polluted river in the world with over 400 textile factories situated nearby which choose to dump their industrial waste directly into the river itself, treating the river as a sewer system which carries away waste. The problem is so intense that the Indonesian military has been implemented to help clean up the area but corporations have resorted to dumping their waste products at night and because the unseen chemicals are the real threat to those living near the river, these companies are permitted to continue dumping as no one can definitively prove their culpability without scientific measurements which are difficult to ascertain as Indonesia is a developing country. Corporations have even begun to strategically place their waste pipes under water so that they can pollute with impunity as no one can physically see the pollution being dumped. Water darker than its surroundings, steam, bubbles, and froth are all key signs which activists use to spot these illegal port systems. It’s difficult to pin point which factories produce textiles for western companies as western companies virtually always refuse to disclose which factories they work with. Some of the largest corporations in fashion (e.g. H&M, the Gap, Levi’s etc.) have revealed their sources but even with this disclosure, some of these companies have been linked to factories within this region. Indonesia isn’t a top 5 global producer of textiles, so to say that Indonesia is part of an even larger problem, is an accurate statement. Most people who live near the Citaum River use the river for bathing, drinking, and/or cooking, and noticeable dermatological effects have been noticed by those living within the area. The primary problem with the Citarum River is with heavy metals (e.g. mercury, cadmium, lead, arsenic etc.). Long term exposure to these substances can cause neurological problems as brain function becomes permanently damaged. These heavy metals are so dire that they can actually lower the intelligence quotient of children who are developing and attending their education. 28,000,000 (28 million) people rely upon the Citarum River daily and eat foods (e.g. rice) irrigated with its waters. Human rights activists have engaged these corporations by physically blocking piping and ducts which have caused the affected corporations to start hiring mercenary criminals to follow and attack those known to be a part of this resistance. Western consumers are the primary cause and possible solution for this problem because if there are no clients willing to purchase the garments, the industry as a whole will shift, not because of political pressure or governmental oversight, but rather because of sales. The problem is not centralized in Indonesia as other developing countries (e.g. India, Bangladesh, China etc.) are equally negatively impacted
The Rationale Why Pharmaceutical Organizations are Not Incentivized to Develop Antibiotics and Why This is Dangerous for the Worlds Next Pandemic
Within 5 short years of release, approximatly 20% of antibiotics become subject to resistance from bacterial pathogens which means that antibiotic proliferation is chronologically limited within its life expectancy. Coupled with this, if an antibiotic is highly effective, the scientific and medical community often rally against its usage so that such a tool can be saved in reserve for a global bacterial pandemic. In either scenario, return upon investment is less than what it would be with a different class of medication (e.g. selective serotonin re-uptake inhibitor, statin, hypnotic etc.) which is why pharmaceutical organizations are less interested in research and development dedicated to antibiotic medicine in favor of other, more profitable medication categories. This lack of investment however is myopic and will inevitably backfire upon the pharmaceutical industry as a whole if new antibiotics are not developed because medications used to treat cancer will become less in demand due to the fact that cancer patients are highly likely to acquire an infection during treatment when their immune system is comprised, with this infection often killing the patient if antibiotic solutions are not available. This would expectedly lead to a sharp decline in cancer medication treatment and subsequently pharmaceutical sales of related medications as patients would be likely to adopt living the rest of their life as fully as possible and forgoing treatment as they would be damned if they accept the cancer treatment and develop an infection which kills them but also damned if they don’t accept the treatment and let the cancer run its course which is almost always fatal
To provide comparison of the research, development, and manufacturing contrast between oncology medications and antibiotics, as of 2020, there are currently 800 medications in development for cancer and hypertension whilst only 28 antibiotic medications undergoing that same research phase and development process, with 2 of these antibiotics expected to become fully developed and able to reach the market and patients. The last new antibiotic class, lipopeptides, were introduced in 1984 with a gap referred to as an “antibiotic void” occurring during the 1990’s, 2000’s, 2010’s, and now moving into the 2020’s. The urgency of this threat is projected to become dire within the coming decades, with scientists predicting that by 2050, medicine could potentially come full circle to the pre-antibiotic era, with microbes which are completely and totally resistant to every antibiotic known to medicine