The Evolutionary Reason Human Beings Seek Violence and Conflict

chimpanzee-violence

Whilst observing chimpanzees in the wild, Jane Goodall noticed her observed chimpanzee community beginning to divide amongst itself, with some members choosing to spend more time in the northern region of the jungle and others in the south. By separating themselves, these chimpanzees inherently relinquished their right to be recognized as part of their previous clan. This once seemingly peaceful community began to become heavily engaged within primitive warfare and conflict, with the entire community which had moved south annihilated into oblivion by their northern counterparts. Goodall stated upon record that it took her considerable time to reconcile this brutality, as she had always thought of chimpanzees akin to human beings however better, kinder, and gentler. Goodall believed that conflict was a human invention, but eventually realized and accepted that the dark and cruel side of human nature was deeply embedded within the human genome and inherited from primate ancestors. It is most probable that a propensity for brutality, violence, and conflict has been hard coded into human beings genetically, at the fundamental level of deoxyribonucleic acid which create proteins, which produce neurons, and subsequently unique neural traits, such as a propensity for violence behavior(s). It would be advantageous for evolution to have evolved such traits because if a person (or animal) is being attacked, the ability to fight back with deadly force is expediently beneficial. This is believed by most scientists to be the reason why such traits have evolved within human beings. It should be noted, prior to Goodall’s work, scientists had no knowledge of chimpanzees engaging in warfare and/or hunting practices, which makes her work groundbreaking and revolutionary to say the least as it provides unique introspective into human behavior(s)

The Future of Body Modification

nanotechnology-dermal-implant

Near field communication, often abbreviated as “NFC” is the ability for wireless devices to communicate with eachother and has now made its way into the bodies of human beings with some opting to implant small subdermal microchips using a large gauge hypodermic syringe (e.g. 14 – 18 gauge) which is preloaded so that these individuals gain the ability to start their vehicle(s), open their home door locks, send contact information to another persons smartphone etc., wirelessly and without any intervention or effort upon the end user. This adaptation is referred to as “transhuman” as it goes beyond what the biological human body can do by introducing technology which cannot be evolved into existence. Devices have been developed for a number of different purposes (e.g. vibrating when pointed towards magnetic north turning the body into a compass or implanting a small chip containing tritium gas which glows beneath the skin but is radioactive and therefore not battery powered lasting indefinitely as tritium gas has a 12 year half-life etc.). In 2018, at the University of Colorado, Dr. Carson Bruns and his team developed a technology which allows for smart tattooing in that newly and highly specialized tattoo inks will be able to deliver new functions to the artistic medium of tattooing. The first design invented was a tattoo ink which is sensitive to ultraviolet light which allows it to lay invisible under typical lighting conditions and only appear as a blue hue once outside in the presense of sunlight or an artificial ultraviolet light source. This technology would be practical as well as esthetic as it would allow a person to know when they’ve had too much sun exposure while outside. Bruns’ team has also developed tattoo ink which changes color as the temperature of the body changes which again would be functional as well as artistic, acting as a thermometer to indicate when a person has had too much or too little exposure to cold or heat. Nanotechnology is used to engineer and design tattoo particles which have specialized properties and characteristics (e.g. thermal battery and/or storage mechanism). Real world applications could be spurred by this advent like the ability to keep the entire body at a comfortable temperature at all times, regardless of the environment, if the entire body was tattooed, either visibly with color or invisibly with translucent ink. Specially engineered tattooing can also have medical applications such as that of the distribution of a pharmacological medication or hormone which helps regulate biochemistry (e.g. insulin or neural catecholamines to control mood etc.). World militaries may find use with specially engineered tattoos as well, allowing skin to become more resilient to abrasions or epidermal damage. Specialized tattoo pigments are also tactile sensitive in that when touched, they have the ability to turn on or off as well as perform other functions (e.g. manipulate an options menu upon a screen or act as a controller for a game or software etc.). In 2018, billionaire futuristic Elon Musk unveiled Neuralink, a technology which he states provides the ability of “self-directed evolution”. Neuralink will be installed within the human body by using a specialized, robotic hypodermic syringe to inject an ultra thin mesh, referred to as “neuro lace”, into the neurocortex of the brain, to form a body of electrodes which are able to monitor and influence brain function. These microelectrodes will be able read and write onto neurons; a bi-directional information exchange. This will allow for the downloading and uploading of information to and from the internet, wirelessly. This technology will allow for thoughts to be sent between users in the same format that data is shared online during the modern day using peer to peer networking. This technology will also allow for the control of devices, remotely; in principle, telekinesis. Nanotechnology now provides scientists with the technology required to manufacture electronics small enough to become tattooed, which means that in the future, Neuralink will only require a small, cranial tattoo instead of a cranial implant

The Causation and Cure for Colorblindness

colorblind-examination

Being colorblind is more difficult than most people believe as those affected often cannot match clothing colors, tell when fruit is ripe, tell when meat is cooked, or tell when traffic lights are various colors in certain lighting conditions (e.g. flashing red being mistaken for flashing yellow). Color vision is trichromatic with 3 types of cone cells within the eyes which consist of blue, green, and red, which are sensitive to short, medium, and long wavelengths of light, with each cone permitting an observer to view approximately 100 different shades. When all shades are combined, the human eye can observe approximately 1,000,000 (1 million) different colors. Colorblindness can stem from faulty cone cells or an interruption between the pathway of the cones and the brain. Colorblindness has caused vehicular deaths due to accidents around the world which have occurred most often because a driver perceived a light as yellow when it was red in reality. Neuroscientist Professor Jay Neitz (pronounced “nites”), a color researcher at the University of Washington in the U.S. and his spouse, geneticist Maureen Neitz, have teamed up to try and cure colorblindness. Gene therapy is currently being researched around the world and scientists believe that colorblindness will be cured using gene therapy in the near future. Male squirrel monkeys are naturally red-green colorblind and gene studies have demonstrated that these monkeys can be afforded color vision after having a gene delivered into the cone cells within the eye. The gene produced transforms a subset of the green cones within the male squirrel monkeys eyes to force them to become red cones, red cones which have hijacked the squirrel monkeys neural circuitry which was previously utilized solely for blue-yellow color vision, essentially bifurcating into red-green cones and blue-yellow cones so that the monkeys examined developed full color vision like human beings as of 2019. The Neitz’s confirmed this by providing male squirrel monkeys colorblind examinations which when answered correctly, delivered a small treat of food after having undergone gene therapy. Trials in human beings have yet to start as the Neitz’s believe that this step is still a few years away, but expected to initiate during the 2020’s

A Revolutionary Breakthrough in Oncology Treatment

T-cell-cancer

Cancer kills 9,000,000 (9 million) people each year and despite having searched for centuries, a cure has yet to be discovered by scientists. At the center of the immune system is the T cell, a type of leukocyte which respond against bacterial and viral infections alike in an effort to keep their host healthy and alive. T cells determine between threatening and non-threatening foreign and non-foreign bodies within a host by leveraging a molecule upon the surface of all cells referred to as the “T cell receptor”. Jim Allison was the first person to successfully isolate and purify the molecule which recognizes this lock and key model for infectious disease, auto-immune disease, and other innocuous substances within the body be they foreign or internally created. In 1987, French scientist Pierre Golstein and his team discovered a new protein upon the surface of T cells which he named “CTLA-4”. To study CTLA-4 in laboratory rats, Allison had to build and design a rat antibody, a Y shaped protein which would trigger a reaction by CTLA-4. Cancers are mutations and should in theory be visible to the immune system, which is why the scientific community has struggled with the paradox of why tumors go undetected by the immune system for decades. There is no discernible reason as to why the immune system can recognize and resist influenza or any other foreign or domestic body but not cancer. Allison theorized that tumors have evolved an ability to fool the immune system, engaging CTLA-4 which turns on the T cells response to halt its search and destroy measures. Allison hypothesized that if he inserted a Y shaped antibody to block the gap in between the tumor and T cells, the tumor would no longer have its ability to hide, a trait which has been evolved by tumor cells over hundreds of millions of years. This would allow the T cell to infiltrate, attack from within the tumor, shrink, and ultimately kill the growth. Allison spent the next decade trying to turn this revolutionary breakthrough discovery into a medication which could be provided to cancer patients. Allison found Alan Korman, a scientist creating medications for auto-immune disease which provided him with the expert he required to turn this idea into a reality. Korman was tasked with taking the CTLA-4 antibody which Allison and partner Max Krummell developed for laboratory rats, and turn it into a medication which could safely work within human beings with this medication subsequently being named “Ipilimumab” (pronounced “ipi-lim-ooh-mab”). Korman ended up collaborating with a friend from graduate school, Nils Lonberg to accomplish this task. Ipilimumab consists of an intramuscular injection into the leg and a 90 minute intravenous medication drip in comparison to chemotherapy and radiation therapy which take months of treatment to complete and have devastating effects upon overall health as both bad and good tissue are destroyed in an effort to eradicate all tumor cells. Allison’s work with laboratory rats demonstrated that with the help of this newly developed antibody, T cells gained the ability enter into tumors and expand their size in an effort to destroy them from the inside out. This means that the fact that tumors grow initially upon administration is a positive marker and indicative of the medication working as it demonstrates successful infiltration of the tumor cells themselves. Patients often report feeling better after a few treatment sessions, sometimes even a single session, despite computer tomography scans demonstrating that their tumors are growing larger, which under normal circumstances would make a patient feel worse. Some patients even noted increased improvement after having stopped the Ipilimumab treatment, with no further therapy required. On March 25, 2011, the U.S. Food and Drug Administration released approval for Ipilimumab. Ipilimumab and its successors have treated nearly 1,000,000 (1 million) patients worldwide with many of these patients achieving permanent remission which is essentially the definition of having been cured of cancer. Although these medications do not work in every single case, they have definitively demonstrated to be a miracle medication for hundreds of thousands of people thus far. After completing this revolutionary discovery, Allison was awarded the Nobel Prize in Medicine in 2018 for his series of discoveries related to T cells and their ability to halt cancer in its progression in perpetuity

The Bulking Agents Used in the Saffron Spice

saffron-bulking-agentBecause saffron is so expensive it’s often mixed with other plants which are not actually saffron but are closely related to saffron to build up the bulk of the weight of a purchase. Turmeric is a primary example of a plant often used to help bulk up supplies. Distributors also use plastic as it helps add weight and eye appeal whilst actually providing nothing more than visual esthetics. Scientists can perform deoxyribonucleic acid examinations to determine if a sample is actually pure saffron or not. High quality saffron should have a humid scent which indicates that it was picked fresh. If the scent of saffron is slightly rancid, it means that it is old or of low quality

The Scientific Study of Consciousness After Decapitation In Rodents

laboratory-rat

Brainwave activity in laboratory rats has been measured after decapitation. Scientists have determined that the brain stays conscious for 4 seconds after decapitation. Laboratory rat brain cells could theoretically start working again if intervention is quick enough supplying the brain with adequate oxygen and glucose

Henri Becquerel’s Discovery of the Glow of Radioactive Materials

Henri-Becquerel

In 1896 French scientist Henri Becquerel was working with radioactive substances and found that under ultraviolet light, these elements began to glow. Becquerel left radioactive uranium salts overnight on a photographic plate which had never been exposed to light. The next day a dark shadow emerged which Becquerel realized was the markings of energy, radioactive energy and therefore discovered radioactivity

Hugh Everett’s “Many World’s” Theory

multiverse

Hugh Everett designed the Many World’s Theory which states that if in the first world a particle is found on the left side, in the second world that same particle is found on the right side, with both findings being equally valid. Everett’s main conclusion was that when a particle splits in 2 to act as a wave, the universe also splits into 2 pieces, only going through 1 of the 2 available slits, but doing so in separate universes. The Many World’s theory is now generally accepted as fact by most physicists, however Everett died before receiving the recognition he deserved for his work. Everett’s theory was treated with a frosty reception when it was first released, as most scientists considered such a theory to be science fiction and speculation rather than proper observed and analyzed fact

Edwin Hubble’s Greatest Discovery

universe-expansion

Edwin Hubble was the first person to notice variability within the luminosity of stars. From this, Hubble was able to work out the distance between the Earth and any star in the universe. This permitted Hubble to calculate how far the Andromeda Galaxy was which is the galaxy nearest to Earth. Albert Einstein did not believe the implications of his own equations and thus added lambda, expressed as “Λ”, to his equations. Lamda was designed to act as an antigravity force, an addition Einstein stated was “necessary only for the purposes of making a quasi static distribution of matter” which means to “maintain the status quo” or to “keep things as they always were”. Once lambda was removed from Einstein’s equations, each one fit perfectly with the observable model of the universe as they account for expansion. Einstein refused to believe the universe was constantly undergoing expansion until years after scientists had confirmed it to be true

The Early Formation of Earth 

early-Earth

During the early days of the solar system, dozens of planets orbited the sun. It is thought that these planets collided and with this collision came intense heat which melted and welded rocks and minerals together. It is theorized that Mercury was only hit once hence it’s small size, Mars not at all, Venus 8x, and Earth 10x primarily because Earth it is the largest of the rocky planets. The last impact towards Earth is thought to have occurred 4,500,000,000 (4.5 billion) years ago which gave Earth its iron core; the lighter debris floated back above Earth and rotated around it which gave Earth rings similar to Saturn. Scientists now know that Earth was hit by rocks which came from Mars. It is thought that primitive microbial life would be able to withstand the journey from Mars to Earth. Earth had enough gravity to hold its oceans which allowed for constant changes in weather. It is thought that life began on Earth 4,300,000,000 (4.3 billion) years ago and that life became sophisticated 2,800,000,000 (2.8 billion) years ago. Despite the Earth being hit 6x catastrophically which was once thought to have sterilized all life, primitive life forms lay dormant in suspended animation within the salt rock which was produced from the immense heat during each catastrophic event. The microbes lay waiting until conditions became more favorable at which time they started reproducing and thriving. Scientists tested this first hand by drilling into salt rock which was created during a catastrophic event to release 200,000,000 (200 million) year old sea water which held tiny microbes called asilospermians which were reanimated when left within a nutrient rich solution for 4 months