The Reason WD-40 Was Developed

The WD-40 formula was developed by 3 scientists who succeeded in their goal upon the 40th design attempt, with the name WD-40 being an acronym meaning “Water Displacement: 40th Formula”. WD-40 was created in 1953 by the Rocket Chemical Company located in San Diego, United States of America. The formula was originally researched and developed as a means to protect the outer skin and thin tanks (e.g. lightweight pressurized tanks which provide structural support when filled saving weight overall) of SM-65 Atlas intercontinental ballistic missiles from rust and corrosion during the manufacturing, handling, and storage process(es) of missile silos. This proprietary mixture resolved for the aerospace industry the need for a dependable water displacing solvent which prevented moisture and other related damage. Early use of WD-40 upon Atlas SM-65 missiles demonstrated the solutions superior effectiveness in comparison to analogs. This prompted a handful of employees to take canisters of WD-40 home which inadvertently inspired the projects founder, Norm Larsen, to package WD-40 in an aerosol form designed specifically for consumer use. WD-40 first appeared on store shelves in 1958 and developed applications in spacecraft maintenance, disaster recovery, and countless home and industrial tasks (eg. lubricating stuck hinges of seized doors, displacing moisture upon electrical contacts, loosening rusted and/or seized bolts etc.)

The Hottest Natural and Artificial Temperature in the Universe

The hottest temperature ever measured and/or observed was within the Large Hadron Collider located on the border of Switzerland and France. When lead particles are smashed together within this particle accelerator, for a split second the temperature reaches 4,000,000,000,000 (4 trillion) degrees Celsius which is hotter than a supernova explosion, albeit the theoretical maximum possible temperature of the universe is believed to be 20 orders of magnitude greater. Contemporary models of physical cosmology postulate that the highest possible temperature is the Planck temperature, which has a value of 1.416785(71)×1032 kelvin. Temperatures above this are believed to be physically impossible because as particle energies become larger and larger, the gravitational forces between them inevitably become as strong as the other 3 fundamental forces which essentially boils and breaks down both the universe and space time. Outside of laboratory conditions however, the hottest naturally occurring place within the universe is the quasar 3C273 (the 273rd entry in the Third Cambridge Catalogue of Radio Sources), a blazing region surrounding a supermassive black hole approximately 2,400,000,000 (2.4 billion) light years away from the Earth, with matter within its accretion disk being measured at temperatures of approximately 10,000,000,000,000 (10 trillion) kelvin, making it far hotter than the core of any star, and 400,000x hotter than the core of the sun, rivaling the conditions of the universe right after the Big Bang

The Coldest Natural and Artificial Temperature in the Universe

The coldest temperature ever measured and/or observed was within a controlled laboratory experiment in Germany; an experiment entitled “Time‑Domain Matter‑Wave Lens System for Atomic Clouds”. During this experiment, physicists cooled a cloud of rubidium atoms to 0.000000000038 (38 trillionths) of 1 degree above absolute zero which is -273.15 degrees Celsius, colder than the vacuum of space, slowing these atoms to a near motionless state for a very short period of time which created a fleeting state of matter existing closer to perfect stillness than anywhere or anything else within the universe. This experiment was the closest scientists have come to achieving complete absence of motion within a controlled setting. Contemporary models of physical cosmology postulate that the theoretical minimum possible temperature is absolute zero, which has a value of 0 kelvin. Temperatures below this are believed to be physically impossible because particle energies become so tiny that all molecular motion ceases to continue functioning, allowing quantum effects to dominate, and producing exotic states of matter (e.g. Bose-Einstein condensates in which matter behaves as a single quantum entity etc.). The coldest naturally occurring place within the universe is the Boomerang Nebula, a dying star cloud located approximately 5,000 light years away from the Earth. The Boomerang Nebula has been measured at 1 degree above absolute zero, making it even colder than the faint afterglow of the Big Bang itself, yet the Time‑Domain Matter‑Wave Lens System for Atomic Cloud experiment is 26,000,000,000x (26 billion) colder and closer to absolute zero than the Boomerang Nebula or any other naturally occurring region with low heat

The Role of Jewish Financiers Within Venice, Italy During the Renaissance and the Reason Christians Became Capable of Charging Interest Upon Loans

During the Renaissance, Jews were tolerated in Venice, Italy because they could provide an invaluable service which Christian financiers and merchants were forbidden to do which was to charge interest upon a loan, a concept referred to as “usury”, derived from the Latin term “usura” which means “use” or “interest”. Christians considered charging interest to be a sin and therefore could not partake in this economic exchange. Unfortunately, the Catholic Church’s Medieval laws against usury acted as a major obstacle for the development of finance within Europe during this period. Jews were not technically permitted to lend capital with interest, but those who did relied upon a convenient clause found within the 23rd chapter of Deuteronomy of the Christian Bible which states that lending to a brother at interest was forbidden but that a stranger was a different matter all together. These Jewish lenders interpreted this scripture as a means to provide the ability to lend to Christians, as Christian’s were not considered brothers of the Jews in a religious context during this period, but they would still not be capable of lending finance to other fellow Jews, as these members of society were viewed as brothers regardless of familial ties. Eventually Christian’s were able to circumvent the prohibition of charging interest, primarily because of Giovanni di Bicci de’ Medici, one of the wealthiest entrepreneurs within Italy during the Renaissance. Medici was able to evade Christian usury legislation as Jewish bankers did because of a clever device of trade which made profit upon exchanging multiple currencies rather than interest rates alone. No “interest” paid to Medici meant no sin had been committed. Medici’s business model took a small commission for each currency conversion rendered, with the size of the loan directly impacting the commission of the person who lent it