How Plants Produce Food Via Photosynthesis

If a leaf is magnified 1000x, green bacteria like structures can be observed, referred to as “chloroplasts,” which are packed into virtually every cell of a plant. These chloroplasts behave like bacteria, retaining their own deoxyribonucleic acid, and are only 5000ths of 1 millimeter (0.005 millimeters or 5 micrometers) in diameter. It is inside chloroplasts that photosynthesis occurs. Photons, which are tiny and rapid moving particles of electromagnetic energy (e.g. rays of light), are harvested upon the surface of the plant’s leaves, where they then enter the plant’s cells and are absorbed by the light harvesting complex located within the chloroplasts themselves. It is here that the photon is leveraged to drive the photolysis reaction, which is to split a water molecule and release oxygen, electrons, and hydrogen ions, fueling the energy transfer mechanisms that ultimately convert carbon dioxide into sugars for the plant’s growth and survival

The Artificial Black Hole Created by U.S. Scientists

In Menlo Park, United States of America, in May of 2017, scientists working at the Stanford Linear Accelerator Center National Accelerator Laboratory (often abbreviated as “SLAC”) fired the world’s most powerful X-ray laser at individual molecules. The reason for this experiment was to observe what would occur when an atom with a lot of electrons is hit by high energy X-ray radiation to observe whether or not those electrons could be knocked out of orbit producing an atom which instead of having many electrons has very few electrons. This system behaved highly unusual and very differently than what scientists expected as it created a miniature black hole like object for 1/1,000,000,000,000,000 (1 quadrillionth) of a second, sucking all remaining electrons into it and exploding the molecule in a dramatic paroxysm

The Renewable Resource of Urine Powered Electronics

Urine is rich in minerals and it is believed that this resource will be able to be harnessed and extracted efficiently and cost effectively at some point in the future to produce electrical energy. At the Bristol Robotics Laboratory in the U.K., urine is being studied as a potential energy resource for residential use within the near future (e.g. used to charge a smartphone etc.). Charging a smartphone with urine requires battery like fuel cells with Professor Ioannis Leropoulos (pronounced “yan-iss lee-raw-po-lis”) having developed a system capable of meeting this requirement. The application itself is referred to as “microbial fuel cell” technology, a system which leverages live bacteria to generate electrical current. Urine contains carbon, phosphorus, potassium, sulphur, magnesium, and creatinine, all elements which microbes require to continue living and growing which is why this technology functions as it does. The microbial fuel cell’s central tube is porous ceramic, allowing urine to permeate the tube and microbes to colonize it. As the elements of urine are consumed, electrons generated by the microbes are picked up by the cells of opposing wire coils, creating a battery. Not just any microbe will suffice however, as specific microbes are required for this process to be effective. To source the correct microbes, scientists leverage a plethora of microbes available within the natural environment (e.g. lake, pond, river sediment etc.). Each fuel cell produces 1.5 volts of electrical current, and when linked together in series, output can be increased to a level which is useful for daily activities. The system is able to be scaled so that it can be built into future homes, allowing for individuals and families to recycle urine as a means of generating electrical energy. Leropoulos’ work has been funded by the Bill & Melinda Gates Foundation as well as by the European Commission among others and is close to becoming commercially available as of 2020. For this system to benefit users, separate urinals would be installed but with redirected plumbing to funnel urine away from becoming mixed with common sewage and into a collection container, providing an on demand resource which can be utilized when needed

The Etymology of “Matter Plasma” and “Blood Plasma”

The term “plasma” is derived from the ancient Greek term “plassein” which means to “shape or mold something”. Plasma related to physics, specifically matter which has had its electrons separated from the rest of its atoms, forcing it to become an ion, more specifically a mixture of free floating electrons and ions, was first identified by British chemist and physicist Sir William Crookes in 1879 using cathode ray tubes. Crookes referred to this discovery initially as “radiant matter” but it became known as “plasma” in 1928 because of American chemist Irving Langmuir. Langmuir was exploring ionized gases, gases which were subjected to strong electrical fields to remove electrons from their orbital shells. Langmuir used the analogy of blood to explain this phenomena, with the ions representative of corpuscles and the remaining gas thought of as clear liquid. Blood is similar to plasma in that it is primarily comprised of 2 components which include its clear liquid and the corpuscles/cells entrapped within this fluid. This clear liquid was named “plasma” by Czech physiologist Johannes Purkinje In 1927. The definition of matter plasma and blood plasma however have absolutely nothing to do with eachother physically, aside from the fact that two different scientists had the idea to use the same term at approximately the same time. It is believed that these two scientists based their name upon the ancient Greek definition of the term “plasma”

Plasma: the 4th State of Matter 

Plasma is created when gasses are heated to high enough temperatures that some of the electrons within the gasses atoms, fly off leaving positively charged ions; this super hot mixture of ions and electrons is referred to as “plasma”. Lightning is a plasma. The sun is also plasma. Plasma is the most common state of matter within the universe as all stars are made up of plasma