The Insect Used to Produce Ink Throughout History

The andricus kollari wasp in particular has played a significant role throughout human history as it is one of the main ingredients of ink. Crushed andricus kollari wasp galls are crushed and mixed with water, then added to crushed iron sulphate and gum Arabic to produce a cost effective and extremely long lasting ink. This specific type of ink is the most important ink used during the last 1000 years of European and subsequently western history as its indelible and essentially ever lasting whether just written or having been dried for hundreds of years. This incredible ink was used to write the Magna Carta and the American Declaration of Independence, has brought forth the recorded musical genius of Wolfgang Amadeus Mozart and Johann Sebastian Bach, was used to produce the artwork of Rembrandt Harmenszoon van Rijn and Leonardo da Vinci, and was utilized to produce the theories of Sir Isaac Newton and Charles Darwin

The Renewable Resource of Urine Powered Electronics

Urine is rich in minerals and it is believed that this resource will be able to be harnessed and extracted efficiently and cost effectively at some point in the future to produce electrical energy. At the Bristol Robotics Laboratory in the U.K., urine is being studied as a potential energy resource for residential use within the near future (e.g. used to charge a smartphone etc.). Charging a smartphone with urine requires battery like fuel cells with Professor Ioannis Leropoulos (pronounced “yan-iss lee-raw-po-lis”) having developed a system capable of meeting this requirement. The application itself is referred to as “microbial fuel cell” technology, a system which leverages live bacteria to generate electrical current. Urine contains carbon, phosphorus, potassium, sulphur, magnesium, and creatinine, all elements which microbes require to continue living and growing which is why this technology functions as it does. The microbial fuel cell’s central tube is porous ceramic, allowing urine to permeate the tube and microbes to colonize it. As the elements of urine are consumed, electrons generated by the microbes are picked up by the cells of opposing wire coils, creating a battery. Not just any microbe will suffice however, as specific microbes are required for this process to be effective. To source the correct microbes, scientists leverage a plethora of microbes available within the natural environment (e.g. lake, pond, river sediment etc.). Each fuel cell produces 1.5 volts of electrical current, and when linked together in series, output can be increased to a level which is useful for daily activities. The system is able to be scaled so that it can be built into future homes, allowing for individuals and families to recycle urine as a means of generating electrical energy. Leropoulos’ work has been funded by the Bill & Melinda Gates Foundation as well as by the European Commission among others and is close to becoming commercially available as of 2020. For this system to benefit users, separate urinals would be installed but with redirected plumbing to funnel urine away from becoming mixed with common sewage and into a collection container, providing an on demand resource which can be utilized when needed

The First Industrial Revolution, Second Industrial Revolution, and Impending Third Industrial Revolution

Industrial revolutions require 3 key components to occur, 3 defining technologies which emerge and converge to create the catalyst needed to usher in a new era of human achievement and progress. The first component is new methods of communication technologies to make communication more efficient and to manage economic and social life (e.g. video conferencing), the second is new sources of energy to more efficiently power economic and social life as well as governance (e.g. renewable energy technologies), and the third is new modes of mobility and logistics to more efficiently move economic and social life as well as governance (e.g. on demand ride sharing). The First Industrial Revolution was caused by the discovery of a new source of energy; coal. Coal powered the new communications medium, the steam powered press, and a new logistics structure via the locomotive railway. When these 3 technologies converged, much of the world (e.g. the whole of Europe) changed seemingly overnight. As a direct consequence of the First Industrial Revolution, business models moved toward market capitalism and major city hubs began developing ushering in the modern world format. The Second Industrial Revolution occurred in the U.S. during the late 19th and early 20th century with the advent of the telephone in the late 19th century, and the advent of radio and television in the early and mid 20th century. At approximately the same time that the telephone and telecommunications networks were being developed, the U.S found a new source of energy which was oil in Texas, United States of America. Henry Ford compounded this discovery by producing a cost effective combustion engine, powered by oil which provided new logistics and mobility technology. The Second Industrial Revolution however is now fading away due to the impact it has had upon the Earth’s climate and humanity is now upon the precipice of a Third Industrial Revolution. The internet has become the new communication medium, millions of people are now adopting renewable energy (e.g. solar, wind, geothermal etc.) and it is predicted that when autonomous vehicles connect to smart roads, the last piece of this puzzle will be complete, thrusting humanity into its 3rd epic epoch

The Exportation of Skilled Labor From the Philippines 

Filipinos account for 40% of the seafaring workforce as they are very cost effective to employ and speak English exceedingly well making them incredibly popular with shipping companies. At sea, Filipino workers have the opportunity to work 5x – 6x more than they would on land. Every hour, 950 Filipinos leave the Philippines to work abroad. The exportation of people is the most important and profitable industry in the Philippines. Those who embark on contracts to work abroad pay 33% of their salary to the Filipino government pouring $10,000,000,000 ($10 billion) each year into the countries economy